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End User License Agreement for CGI Software (Non-SDK) 
 
The Software is protected by United States copyright laws and various international treaties.  By installing or using the 

Software, you agree to be bound by the terms of this Agreement.  If you do not agree with the terms of this Agreement, do not 

install or use the Software.  This Agreement is governed by the laws of the United States and the State of Colorado.  You may 

not export the Software in violation of applicable export laws. 

 

1. DEFINITIONS 

“Software” means all of the contents of the files, disk(s), CD-ROM(s), or other media with which this Agreement is provided.  

“Documentation” means all of the contents of the files, printed materials with which this Agreement is provided.  “End User” 

means you.  “CGI” means Computations & Graphics, Inc. 

 

2. GRANT OF LICENSE 

a).  The following applies if you have purchased a perpetual Software license: 

CGI grants you (the End User) a non-exclusive, non-transferable license to use the Software on a single computer.  You may not 

rent, lease, or resell the Software.   You may not disassemble, decompile, reverse engineer, or modify the Software in any way.  

This License starts from the date you receive the Software and will last as long as the End User complies with the terms of this 

Agreement. 

 

b). The following applies if you have purchased a subscription Software license: 

CGI grants you (the End User) a non-exclusive, non-transferable license to use the Software simultaneously via the internet on a 

certain number of computers  for a certain subscription period. You may not rent, lease, or resell the Software.   You may not 

disassemble, decompile, reverse engineer, or modify the Software in any way.  This License starts from the date you purchased 

the subscription license and will last for the subscription period. 

 

3. SUPPORT 

CGI offers limited 30 days of free email technical support related to the installation and use of the most recent version of the 

Software, starting from the start date of this Agreement.  CGI has no obligation to provide support in any form if your version of 

the Software is not the most recent version.  CGI, in its sole discretion, will determine what constitutes a support incident.  CGI 

reserves the right to refuse support service to anyone. 

 

4. COPYRIGHT 

The Software and Documentation are the intellectual property of and are owned by CGI.  You may make at most one copy of 

the Software and/or the Documentation for backup purposes. 

 

5. COMMERCIAL USES 

The Standard and Professional versions of the Software may be used for commercial purposes. 

The Evaluation, Educational, and Beta versions of the Software may not be used for commercial purposes.  

 

6. LIMITATION OF LIABILITY 

IN NO EVENT WILL CGI OR ITS SUPPLIERS BE LIABLE TO YOU FOR ANY DAMAGES, CLAIMS, OR COSTS 

WHATSOEVER OR ANY CONSEQUENTIAL, INDIRECT, INCIDENTAL DAMAGES, OR ANY LOST PROFITS OR 

LOST SAVINGS, EVEN IF CGI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS, DAMAGES, CLAIMS, OR 

COSTS. 

 

7. DISCLAIMER 

CGI HAS TAKEN EVERY EFFORT TO MAKE THE SOFTWARE RELIABLE AND ACCURATE.  HOWEVER, IT IS THE 

END USER’S RESPONSIBILITY TO INDEPENDENTLY VERIFY THE ACCURACY AND RELIABILITY OF THE 

SOFTWARE.  NO EXPRESS OR IMPLIED WARRANTY IS PROVIDED BY CGI OR ITS DEVELOPERS ON THE 

ACCURACY OR RELIABILITY OF THE SOFTWARE. 

8. REFUND POLICY 

All sales are final and no refunds will be given. If you do not agree to and accept this policy, do not purchase the license of this 

software. 

 

9. TERMINATION OF THIS LICENSE: 

This Agreement becomes effective on the date you accept this Agreement and will continue until terminated as provided for in 

this Agreement. CGI may terminate this license at any time if you are in breach of any of its terms and conditions. Upon 

termination, you must immediately return to CGI or destroy the Software and all copies thereof. 
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Copyright 

 

THE SOFTWARE REAL3D (FORMERLY REAL3D-ANALYSIS) AND ALL ITS 

DOCUMENTATION ARE THE INTELLECTUAL PROPERTY OF AND ARE OWNED BY 

COMPUTATIONS & GRAPHICS INC. (CGI).  ILLEGAL USE OF THE SOFTWARE OR 

REPRODUCTION OF ITS DOCUMENTATION IS STRICTLY PROHIBITED. 

 

 

Disclaimer 

 

CGI HAS TAKEN EVERY EFFORT TO MAKE THE SOFTWARE RELIABLE AND 

ACCURATE.  HOWEVER, IT IS THE END USER’S RESPONSIBILITY TO  

INDEPENDENTLY VERIFY THE ACCURACY AND RELIABILITY OF THE SOFTWARE.  

NO EXPRESS OR IMPLIED WARRANTY IS PROVIDED BY CGI OR ITS DEVELOPERS 

ON THE ACCURACY OR RELIABILITY OF THE SOFTWARE. 

 

 

Notice 

 

SINCE REAL3D COMES IN DIFFERENT VERSIONS, SOME FEATURES DESCRIBED IN 

THIS DOCUMENTATION MAY NOT APPLY TO THE SPECIFIC VERSION OF THE 

PROGRAM YOU ARE RUNNING. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Windows is a registered trademark of Microsoft Corporation. 

Real3D is a trademark of Computations & Graphics, Inc. 

 

Copyright 2002-2025 by Computations & Graphics, Inc.  All rights reserved. 

 

Revised March, 2025 
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A-01 (Simple 3d-Truss - Model Type 3D Truss) 

 
Objective 

To verify the behavior of the 3d truss element. 

 

Problem Description 

A simple 3d truss is supported and loaded as shown below.  Nodal X, Y, and Z coordinates are 

given in parenthesis. 

Material properties: E = 200 KN/mm2, ν = 0.3 

Section properties: A12 = 2e4 mm2, A13 = 3e4 mm2, A14 = 4e4 mm2, A15 = 3e4 mm2 

      All members Iz = 1e10 mm4, Iy = 1e10 mm4 , J = 1e10 mm4 

Nodal forces applied at node 1: Px = 200 KN, Py = 600 KN, Pz = -800 KN 

 

 
 

Finite Element Model 

4 beam elements 

Model type: 3D Truss 

 

Results 

The displacements and support reactions are given in [Ref 1].
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Units: displacement-mm; reaction-KN 

 Real3D [Ref 1] 

 X Y Z X Y Z 

Displacement @ N1 0.1779 2.722 -0.4865 0.1783 2.722 -0.4863 

Reactions @ N2 -76.39 -152.78 -305.56 -76.4 -152.8 -305.6 

Reactions @ N3 170.83 -113.88 -227.77 170.8 -113.8 -227.7 

Reactions @ N4 -470.83 -156.94 627.77 -470.7 -156.9 627.8 

Reactions @ N5 176.39 -176.39 705.56 176.3 -176.3 705.5 

 

Comments 

The results given by Real3D are very close to the referenced values. 

 

The deflection diagram is shown below for illustration purposes. 

 

 
Deflection Diagram 

 

Reference 

[1]. McGuire, Gallagher and Ziemian, “Matrix Structural Analysis” 2nd Edition, pp104, John 

Wiley & Sons, Inc., 2000 



 4  

A-01 (Simple 3d-Truss - Model Type 3D Frame) 

 
Objective 

To verify the behavior of the 3d frame element with moment releases 

 

Problem Description 

A simple 3d truss is supported and loaded as shown below.  Nodal X, Y, and Z coordinates are 

given in parenthesis. 

Material properties: E = 200 KN/mm2, ν = 0.3 

Section properties: A12 = 2e4 mm2, A13 = 3e4 mm2, A14 = 4e4 mm2, A15 = 3e4 mm2 

      All members Iz = 1e10 mm4, Iy = 1e10 mm4 , J = 1e10 mm4 

Nodal forces applied at node 1: Px = 200 KN, Py = 600 KN, Pz = -800 KN 

 

 
 

Finite Element Model 

4 beam elements 

Model type: 3D Frame & Shell 
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Moment Releases 

 

The following table shows one way to apply moment releases.  Please note that we only apply 

torsional moment release either (not both) end of a member. 

 

Member Id Start oz End oz Start oy End oy Start ox End ox 

1 Released Released Released Released Released Not Released 

2 Released Released Released Released Released Not Released 

3 Released Released Released Released Released Not Released 

4 Released Released Released Released Not Released Not Released 

 

 

Results 

The displacements and support reactions are given in [Ref 1]. 

Units: displacement-mm; reaction-KN 

 

 Real3D [Ref 1] 

 X Y Z X Y Z 

Displacement @ N1 0.1779 2.722 -0.4865 0.1783 2.722 -0.4863 

Reactions @ N2 -76.39 -152.78 -305.56 -76.4 -152.8 -305.6 

Reactions @ N3 170.83 -113.88 -227.77 170.8 -113.8 -227.7 

Reactions @ N4 -470.83 -156.94 627.77 -470.7 -156.9 627.8 

Reactions @ N5 176.39 -176.39 705.56 176.3 -176.3 705.5 

 

Comments 

 

The results given by Real3D are very close to the referenced values. The results in this example 

using 3D Frame & Shell model with moment releases are identical to those in the previous 

example using 3D Truss model.  It is generally easier and more efficient to use 3D Truss model 

type if your model contains only truss members as the program will automatically suppress 

global OX, OY and OZ DOFs.  On the other hand, 3D Frame and Shell model type (with proper 

moment releases) should be used if your model contains both truss and frame members.   

 

Reference 

 

[1]. McGuire, Gallagher and Ziemian, “Matrix Structural Analysis” 2nd Edition, pp104, John 

Wiley & Sons, Inc., 2000 
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A-02 (Simple 3d-Beam) 

 
Objective 

To verify the behavior of the 3d beam element 

 

Problem Description 

A simple 3d beam of round section is fixed at one end and loaded at the tip of the other end as 

shown below.   

Lengths: L1 = 120 in, L2 = 60 in 

Material properties: E = 2.9e7 psi, G = 11.15e6, ν = 0.3 

Section properties: Ix = Iy = 1017.88 in4, J = 2023.75 in4
, Az = 10 in2 

Tip Force P = 1e4 lb 

 

 
 

Finite Element Model 

2 beam elements 

Model type: 3D Frame & Shell (shear deformation ignored) 

 

Results 

The tip vertical displacement Dy at N3 may be calculated as [Ref 1]: 

in 

Unit:  displacement - in 

 Real3D Theoretical 

Displacement Dy @ N3 -0.4098 -0.4098 

 

Comments 

The results given by Real3D are identical to the theoretical values. 

 

The moment, shear and deflection diagrams are shown below for illustration purposes. 
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Major Moment Diagram (Mz) 

 
Torsion Diagram (Mx) 

  

 
Shear Diagram (Vy) 

 
Deflection Diagram 

 

Reference 

[1]. Long & Bao, “Structural Mechanics”, pp146, People’s Educational Publishing House, 

China, 1983.  
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A-03 (Beam on Grade) 

 
Objective 

To verify the behavior of the line spring 

 

Problem Description 

A 300 in beam is supported on an elastic foundation and subjected to a point force of -40,000 lb 

at the middle as shown below [Ref 1]: 

Material properties: E = 29,000 ksi, ν = 0.3 

Section properties: Iz =125.8 in4, A = 1 in2 

Elastic line spring constant: Ky = 1500 lb / in2 

 
 

Finite Element Model 

20 beam elements 

Model type: 2D Frame 

 

Results 

The displacement and moment at the middle of the span are given in [Ref 1]. 

Units: displacement – in; moment – kip-in 

@ middle of the span Real3D [Ref 1] 

Displacement Dy -0.239 -0.238 

Moment Mz 544.44 547 

 

Comments 

1. The results given by Real3D are very close to the referenced values. 

2.  Line springs may be replaced by equivalent nodal springs or even truss elements with 

appropriate section properties as indicated in [Ref 1]. 

 

Reference 

[1]. McGuire, Gallagher and Ziemian, “Matrix Structural Analysis” 2nd Edition, pp87, John 

Wiley & Sons, Inc., 2000  
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A-04 (P-delta Beam) 

 
Objective 

To verify the 2nd-order behavior (P-δ) of beam element 

 

Problem Description 

A 12 ft. simply supported beam is subjected to a pair of compressive forces of P = -100 kips at 

the ends and a transverse point force of Q = -6 kips at the middle as shown below [Ref 1]. 

Material properties: E = 30e6 psi, ν = 0.3 

Section: 4 x 4 in (Iz = 21.3333 in4, A = 16 in2) 

 

 
 

Finite Element Model 

4 beam elements 

Model type: 2D Frame (First order and P-Delta) 

 

Results 

The displacement and moment at the middle of the beam may be calculated as follows [Ref 1]: 

First order:𝑀𝑧 =
𝑄𝐿

4
= 18 kip-ft; 𝐷𝑦 =

𝑄𝐿3

48𝐸𝐼
= 0.583 in 

Second order: 𝑢 =
𝐿

2
√

𝑃

𝐸𝐼
= 0.9 rad (= 51.57o) 

𝑀𝑧 =
𝑄𝐿

4

𝑡𝑎𝑛(𝑢)

𝑢
= 25.2 kip-ft;  

𝐷𝑦 =
𝑄𝐿

4𝑃
(

𝑡𝑎𝑛(𝑢)−𝑢

𝑢
) = −0.864 in 

Units: displacement – in; moment – kip-in 

@ middle of the span Real3D [Ref 1] 

First-order Displacement Dy -0.5832 -0.583 

First-order Moment Mz 18 18 

Second-order Displacement Dy -0.8643 -0.864 

Second-order Moment Mz 25.203 25.2 
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Comments 

1. The results given by Real3D are very close to the referenced values. 

2. In order to capture P- δ behavior that is associated with member curvature, the beam must be 

split into multiple segments.  In this example, we used 4 segments and produced satisfactory 

results.  On the other hand, the splitting is not needed to capture P-Δ behavior that is associated 

with the lateral translation of the frame members. 

 

Reference 

[1]. Leet & Bernal, “Reinforced Concrete Design” 3rd Edition, pp294, McGraw-Hill, 1997  



 11  

 

A-05 (Rotational Spring) 

 
Objective 

To verify the behavior of the rotational spring 

 

Problem Description 

A 10-inch-long cantilever beam is subjected to a triangular linear load of q = 2 lb/in. 

Material properties: E = 2.9e7 psi, ν = 0.3 

Section properties: Ix = 1000 in4, Az = 10 in2 

Boundary condition: rotational spring constant Koz = 1e4 lb-in/rad, Dx and Dy fixed. 

 

 
 

Finite Element Model 

1 beam element 

Assign large spring constants to Kx, Ky to represent fixed DOFs Dx, Dy  

Model type: 2D Frame 

 

Results 

The rotational displacement Doz at N1 and vertical displacement Dy at N2 may be calculated as: 

@N1: 𝐷𝑜𝑧 =
(0.5𝑞𝐿)∗𝐿/3

𝐾𝑜𝑧
= −3.333𝑒−3 rad 

@N2, 𝐷𝑧 = 𝐷𝑜𝑧𝐿 = −3.333𝑒−2 in 

Units: displacement – in; rotation - rad 

 Real3D Theoretical 

Rotation Doz @ N1 -3.333e-3 -3.333e-3 

Displacement Dy @ N2 -3.333e-2 -3.333e-2 

 

Comments 

The results given by Real3D are identical to the theoretical values. 

 

The displacements due to beam strains are negligible.  
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A-06 (Non-Prismatic Continuous Beam) 

 
Objective 

To verify the behavior of a non-prismatic beam 

 

Problem Description 

A 3-span non-prismatic continuous beam is fixed at the right end as shown below [Ref 1]. 

Material properties: E = 1.99948e11 N/m2, ν = 0.3 

Section properties: width b = 0.1 m, heights as shown (unit: meter) 

 

 
 

Finite Element Model 

3 beam elements, then use Generate | Non-Prismatic Beams 

Model type: 2D Frame (do not consider shear deformation) 

 

Results 

The moments at supports given by Real3D are compared with those given in [Ref 1]. 

Unit: moment – KN-m 

Real3D [Ref 1] 

Mz @ B Mz @ C Mz @ D Mz @ B Mz @ C Mz @ D 

-4.39 -4.24 -9.13 -4.28 -4.21 -9.15 

 

Comments 

The results given by Real3D are close to the referenced values. 

 

In Real3D, the non-prismatic beam is approximated by splitting an existing beam into multiple 

beams (segments) to which different section properties are automatically assigned.  The steps to 

create the model in this problem are as follows: 

1.  Create 3 (prismatic) beams: AB - 4 m, BC – 6m, CD – 8 m 
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2.  Define and assign uniform and point loads on beams 

3.  Assign supports to A, B, C and D 

4.  Define and assign section to beam CD 

5.  Define and assign material to beams AB, BC, and CD. 

6. Select the beam AB.  Run the command Geometry | Generate | Non-Prismatic Members.  

Enter the input for “Generate Non-prismatic Members” as follows.  The distance list specifies 

how many beam segments to be used to approximate the non-prismatic beam.  In our input, we 

use one segment for the left 2 m and 10 segments for the right 2 m haunch.  More segments 

could be used to achieve even more accurate result.  It should be pointed out that appropriate 

section properties are assigned to the segmented beams. 

 
 

7. Select the beam BC.  Run the command Geometry | Generate | Non-Prismatic Members.  

Enter the input for “Generate Non-prismatic Members” as follows.   

 
 

Reference 

[1]. Lin, Liu, Jiang “Structural Statics Calculation Manual”, pp. 232, Building Industry 

Publishing House of China, 1993  



 14  

 

A-07 (2D Steel Frame) 

 
Objective 

To verify the behavior of the beam element in a large 2D steel frame 

 

Problem Description 

A 5-span, 12-story 2D steel frame is subjected to static lateral and vertical loads as shown below.  

All beams are W24’s and all columns are W14’s.  The lateral loads are in kips and vertical 

linear loads are in kip/ft (self-weight included). 

Material properties: E = 29000 ksi, ν = 0.3, density = 483.84 lb/ft3 

 

 
Interior columns:   

Floor 1 – 4: W14x120 

Floor 5 – 8: W14x90 

Floor 9 – 12: W14x68 

 

Exterior columns:   

Floor 1 – 4: W14x90 

Floor 5 – 8: W14x68 
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Floor 9 – 12: W14x48 

 

Beams:   

Floor 1 – 4: W24x131 

Floor 5 – 8: W24x104 

Floor 9 – 12: W24x84 

 

Units: Iz, Iy and J – in4, A, Ay and Az – in2 

Section Iz Iy J A Ay Az 

W14X120 1380 495 9.37 35.3 8.555 23.03 

W14X90 999 362 4.06 26.5 6.16 17.1583 

W14X68 722 121 3.01 20 5.81 12 

W14X48 484 51.4 1.45 14.1 4.692 7.96308 

W24X131 4020 340 9.5 38.5 14.8225 20.64 

W24X104 3100 259 4.72 30.6 12.05 16 

W24X84 2370 94.4 3.7 24.7 11.327 11.5757 

 

Finite Element Model 

132 beam elements 

Model type: 2D Frame (shear deformation included) 

 

Results 

The displacements and support reactions compared with another program, Frame Analysis & 

Design (STRAAD) [Ref 1]. 

Units: displacement-in; reaction force-kips, reaction moment - kip-ft 

 Real3D 
Frame Analysis & Design 

(STRAAD) 

 First order Second order First order Second order 

Dx @ node 73 5.981 7.151 5.9762 7.1347 

Rx @ node 3 -36.773 -34.825 -36.7694 -34.8356 

Ry @ node 3 2456.514 2457.846 2456.4503 2457.9036 

Roz @ node 3 303.299 377.605 303.2664 377.6628 

 

Comments 

The results given by Real3D are very close to the referenced values. 

 

Reference 

[1]. “Frame Analysis & Design”, Digital Canal Corporation, Dubuque, Iowa, USA  
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A-08 (A Simple Suspension Bridge) 

 
Objective 

To verify the behavior of the beam element with moment releases 

 

Problem Description 

A suspension bridge consists of a 60m long beam fixed on both ends and two 25m long truss 

members which suspend the beam as shown below. 

Lengths: shown in parentheses 

Material properties: E = 200 kN/mm2, ν = 0.3 

Beam Section: Ix = Iy = J= 0.1 m4, Az = 1.0955 m2 

Truss Section: Ix = Iy = J= 2e-6 m4, Az = 0.005 m2 

Uniform load on beam: -10 kN/m 

 

 
 

Finite Element Model 

5 beam elements (moment release at truss ends connecting the beam) 

Model type: 2D Frame (shear deformation ignored) 

 

Results 

The displacements and internal forces given by Real3D are compared with the reference [Ref 1]. 

 

 Real3D Ref 1 

Displacement Dy @ N2 (m) -3.970e-003 79400/(EI) = -3.97e-3 

Rotation Doz @ N2 (rad) -2.540e-004 5080/(EI) = -2.540e-004 

Maximum (+) Moment in Beam 

(kN-m) 
674.755 675 

Maximum (-) Moment in Beam 

(kN-m) 
-682.840 682 

Shear at Beam Ends (kN) 42.88 42.8 

Shear at Beam Third Point (kN) 100 100 

Maximum Axial Force in Trusses 

(kN) 
95.2 95.2 
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Comments 

The results given by Real3D are very close to the referenced values.  Since the model contains 

both truss and beam members, we used 2D Frame model type and applied moment releases to 

beam elements for truss members. 

The reference gives the relationship of section properties as (EA)truss = (EI)beam/(20m).  The 

properties used in the problem were selected based on this assumption.  The beam section area 

is much greater than the truss section area.  Therefore, the axial deformation in the beam is 

practically ignored. 

 

The moment, shear, and axial force diagrams are shown below for illustration purposes. 

 

 
 

Major Moment Diagram (Mz) 

 
 

Shear Diagram (Vy) 
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Axial Force Diagram (Vx) 

 

 

Reference 

[1]. Long & Bao, “Structural Mechanics”, pp279, People’s Educational Publishing House, 

China, 1983. 



 19  

A-09 (2D Truss with Tension Only Member) 

 
Objective 

To verify the behavior of the tension only element 

 

Problem Description 

A member connecting node 2 and node 4 is tension only in the 2D truss shown below. 

Lengths: shown in parentheses in meters 

Material properties: E = 205 kN/mm2, ν = 0.3 

All Sections: Az = 1500 mm2 

Loads: as shown 

 

 
 

Finite Element Model 

8 beam elements, with one member connecting N2-N4 being tension only 

Model type: 2D Truss 

 

Results 

The displacements and internal forces given by Real3D are compared with the reference [Ref 1]. 

 

 Real3D Ref 1 

Displacement Dx @ N3 (mm) 3.469 3.46 

Displacement Dy @ N3 (mm) 19.12 19.13 

Axial Force in Member 

connecting N1-N5 (KN) 
181.67 181.7 

 

Comments 
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The results given by Real3D are very close to the referenced values.  Since the member 

connecting N2-N4 is tension only but subjected to compression force, its stiffness is ignored in 

the 2nd iteration during the solution of this nonlinear model.  We can also set the member to be 

inactive to achieve the same effect. The difference between using tension/compression only 

members and inactive members is that the former requires non-linear solution while the latter 

does not (unless other nonlinearities such as non-linear springs or P-Delta analysis exist). 

 

 

Reference 

 

[1]. William M.C. McKenzie, “Examples in Structural Analysis”, pp. 125, Taylor & Francis, 

2006. 
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A-10 (3D Frame with Rigid Diaphragms) 

 
Objective 

To verify the behavior of the rigid diaphragms in 3D Frame 

 

Problem Description 

A two-story building is subjected two nodal loads in global X direction at two story level nodes.  

The X-bay and Z-bay distances are both 18 ft.  The story height is 12 ft. 

Material properties: E = 3155.92 ksi, ν = 0.15 

All Sections: rectangular 12x12 in.   

Iyy = Izz = 1728 in4; J = 2920.32 in4 ;   

Az = 144 in2; Ax = Ay = 120 in2 

Loads: two 20 kips nodal loads in global X direction as shown. 

 

 
 

Finite Element Model 

Model type: 3D Frame, with rigid diaphragms defined at two story levels. 

Diaphragm stiffness factor: default value (=10000) 

 

Results 
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The displacements and support reactions given by Real3D with and without rigid diaphragm 

actions are shown below. 

Displacements: 

Node Dx (in) Dy (in) Dz (in) Dox Doy Doz 

Diaphragm actions considered 

5 1.01E+00 4.95E-03 6.70E-01 1.01E-03 6.20E-03 -2.01E-03 

6 1.01E+00 -4.95E-03 -6.70E-01 -1.01E-03 6.20E-03 -2.01E-03 

11 2.35E+00 4.95E-03 6.70E-01 1.01E-03 6.20E-03 -4.03E-03 

12 2.35E+00 -4.95E-03 -6.70E-01 -1.01E-03 6.20E-03 -4.03E-03 

Diaphragm actions ignored 

5 8.36E-01 4.17E-03 5.03E-01 8.31E-04 5.99E-03 -1.81E-03 

6 8.36E-01 -4.17E-03 -5.03E-01 -8.31E-04 5.97E-03 -1.81E-03 

11 2.53E+00 5.72E-03 5.03E-01 8.31E-04 5.99E-03 -4.23E-03 

12 2.52E+00 -5.72E-03 -5.03E-01 -8.31E-04 5.97E-03 -4.24E-03 

 

Reactions 

Node Rx (kip) Ry (kip) Rz (kip) Rox Roy Roz 

Diaphragm actions considered 

1 -5.42E+00 -1.15E+01 -4.58E+00 -3.37E+01 -7.63E+00 4.30E+01 

2 -5.42E+00 1.15E+01 4.58E+00 3.37E+01 -7.63E+00 4.30E+01 

7 -1.46E+01 -1.15E+01 -4.58E+00 -3.37E+01 -7.63E+00 1.10E+02 

8 -1.46E+01 1.15E+01 4.58E+00 3.37E+01 -7.63E+00 1.10E+02 

Diaphragm actions ignored 

1 -3.96E+00 -9.55E+00 -3.12E+00 -2.34E+01 -7.55E+00 3.26E+01 

2 -3.96E+00 9.55E+00 3.12E+00 2.34E+01 -7.52E+00 3.26E+01 

7 -1.61E+01 -1.34E+01 -3.12E+00 -2.34E+01 -7.55E+00 1.21E+02 

8 -1.60E+01 1.34E+01 3.12E+00 2.34E+01 -7.52E+00 1.21E+02 

 

 

Comments 

The diaphragm actions are noticeable in this example. Although the model is subjected to 

unsymmetrical loads, the nodal rotations about global Y axis are the same for nodes on the 

diaphragms.  This means that the diaphragm stiffness factor, which happens to be the default 

value 10000, is appropriate for this example.  The program is also capable of handle slanting 

diaphragms.  For example, you may rotate the model about Z axis by (-30) degrees.  Adjust 

the local angles for horizontal members as well as the nodal forces accordingly.  The Dx for the 

Node 5, 6, 11 and 12 given by the program are 8.769e-001, 8.720e-001, 2.037e+000 and 

2.032e+000 in.  The correctness can be verified as the following: 

Dx @ node 5: 1.01cos30 + 0.00495sin30 = 0.877 
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A-11 (2D Frame with Support Settlements) 

 
Objective 

To verify the behavior of the forced translational and rotational displacements 

 

Problem Description 

A frame [Ref 1] is clamped at point A and rolled at points B and C as shown below.  The 

relative flexural stiffness of each element is shown in a circle. No external load is applied to the 

frame, but the frame is subjected to settlement of fixed support A.  Assume that the vertical, 

horizontal, and angular settlements are a = 2 cm, b = 1 cm, and ᵩ = 0.01 rad, respectively. 

 

 
 

Finite Element Model 

Model type: 2D Frame, without considering frame shear deformation.   

The reference does not specify material and section specifically, so we will use steel and 

rectangular sections  (100 mm x 100 mm for vertical members and 200 mm x 100 mm for 

horizontal member, which satisfy the relative flexural stiffness of members). 

E = 200 kN/mm2, I = 8.33333e+006 mm4 

 

Results 

The support reactions given by Real3D are shown below. 
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 Real3D Ref 1 

Reaction Moz @ A 7.57 kN-m 

C1 * EI = 4.5418 * 10-3 * (1/m) * 200 

kN/mm2 * 8.333 * 106 mm4 

= 7.5667 kN-m 

Reaction Ry @ B -0.19 kN 

C2 * EI = -1.119 * 10-4 * m2 * 200 

kN/mm2 * 8.333 * 106 mm4 

= -0.1865 kN 

Reaction Rx @ C -1.18 kN 

C3 * EI = -7.076 * 10-4 * m2 * 200 

kN/mm2 * 8.333 * 106 mm4 

= -1.179 kN 

 Note: From [Ref 1] 

C1 = 4.5418 * 10-3 (unit: 1/m) 

C2 = -1.119 * 10-4 (unit: 1/m2) 

C3 = -7.076 * 10-4 (unit: 1/m2) 

 

 

Comments 

The results given by Real3D are very close to the referenced values. 

 

Reference 

 

[1]. Igor A. Karnovsky, Olga Lebed, “Advanced Methods of Structural Analysis”, pp. 248, 

Springer Science+Business Media, LLC, 2010. 
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A-12 (2D Frame with Rigid Offsets) 

 
Objective 

To verify the behavior of the rigid offsets 

 

Problem Description 

A portal frame [Ref 1] is clamped at point A and D as shown below.  The columns are of 

rectangular size 200mm x 800mm.  The beam is of rectangular size 200mm x 1000 mm.  The 

beam is subjected to a uniform load 10 kN/m. 

 
 

Finite Element Model 

Model type: 2D Frame, without considering frame shear deformation.  

The reference does not specify material specifically, so we will use concrete with fc = 3ksi. 
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Results 

The following are the moment diagrams for modeling the structure with rigid offsets and without 

rigid offsets. 

 

 

 Real3D 

With Rigid Offsets 

Ref 1 

Beam Max Negative Moment 11.09 kN-m 11.23 kN-m 

Beam Max Positive Moment 16.91 kN-m 16.9 kN-m 

Moment Reactions at Supports 5.39 kN-m 5.43 kN-m 

  

Comments 

The results given by Real3D are very close to the referenced values.  The reference computes 

moment diagram manually using displacement method.  There are noticeable differences 

between results with rigid offsets and those without. 

 

Reference 

[1]. Long & Bao, “Structural Mechanics”, pp296, People’s Educational Publishing House, 

China, 1983. 
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A-13 (2D Truss with an Inclined Roller) 

 
Objective 

To verify the behavior of inclined roller using multi-DOF constraint 

 

Problem Description 

A truss [Ref 1] is supported by a pinned support at point c and a roller (inclined at 30 degrees 

from horizontal line) at point b as shown below.   

Sections: ab = 20,000 mm^2, ac = 15,000 mm^2, bc = 18,000 mm^2 

Material: E = 200 MPa 

 

 
 

When creating the inclined roller, we can set any point along the roller angle line as the reference 

point.  For example, if the coordinate at point b is (10.928, 0, 0), then we can set the reference 

point as (10.928 + 10 * cos30, 10 * sin30, 0) = (19.588254, 5, 0).   

 

  
 

This effectively creates a multi-DOF constraint as the following: 
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Results 

The following are the displacements and support reactions given by Real3D and [Ref 1].  The 

reaction resultant @ b is calculated by hand as following: 

𝑅 =
383×4−321.4×(

4

𝑡𝑎𝑛(30)
)

10.928×𝑐𝑜𝑠(30)
= −73.4kN (pointing to bottom-right). 

𝑅𝑥 = 73.4 × 𝑠𝑖𝑛( 30) = 36.7kN 

𝑅𝑦 = −73.4 × 𝑐𝑜𝑠( 30) = −63.57kN 

 

 Real3D Ref 1 

Displacement Dx @ a 0.9282 mm 0.928 mm 

Displacement Dy @ a 1.142 mm 1.143 mm 

sqrt(Dx * Dx + Dy * Dy) @ b 0.09416 mm 0.094 mm 

Reaction Rx @ c -419.70 kN -419.7 kN (by hand) 

Reaction Ry @ c -257.83 kN -257.83 kN (by hand) 

Reaction Rx @ b 36.70 kN (constrained force) 36.70 kN (by hand) 

Reaction Ry @ b -63.57 kN (constrained force) -63.57 kN (by hand) 

  

Comments 

The displacement results given by Real3D are very close to the referenced values.  The support 

reactions are not given in Ref 1 but can be easily calculated by hand, which match exactly with 

those given by Real3D. 

 

Reference 

[1]. W. McGuire & R.H. Gallagher & R.D. Ziemian, “Matrix Structural Analysis” pp. 390, 2nd 

ed., John Wiley & Sons, Inc., 2000 
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A-14 (2D Truss with Thermal Load) 

 
Objective 

To verify the behavior of thermal load 

 

Problem Description 

In the truss [Ref 1] below, all bars are cooled by 20 degrees Celsius.   

Material: E = 200 MPa, thermal coefficient α = 1.2e-5 mm/mm per degree Celsius 

 

 
 

Results 

The following are the results given by Real3D and [Ref 1].   

 

 Real3D Ref 1 

Displacement Dx @ a -4.044e-01 mm -0.4045 mm 

Displacement Dy @ a -6.995e-02 mm -0.0698 mm 

Reaction Rx @ b 0 kN 0 kN 

Reaction Ry @ b -274.01 kN -274 kN 

Reaction Rx @ c -173.71 kN -173.8 kN 

Reaction Ry @ c 100.29 kN 100.2 kN 

Reaction Rx @ d 173.71 kN 173.8 kN 

Reaction Ry @ d 173.71 kN 173.8 kN 

  

Comments 
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The displacement results given by Real3D are very close to the referenced values.   

 

Reference 

[1]. W. McGuire & R.H. Gallagher & R.D. Ziemian, “Matrix Structural Analysis” pp. 127, 2nd 

ed., John Wiley & Sons, Inc., 2000 
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A-15 (Multi-DOF Constraints - Cyclically Symmetric Frame) 

 
Objective 

To verify the multi-DOF constraints to enforce cyclic symmetry 

 

Problem Description 

In the frame [Ref 1] below, each of the 16 members is 10 inch long.   

Material: E = 1.2e7 psi, ν = 0.15. 

Sections: A = 1.0 in2, Iyy = Izz = 8.33e-2 in4  

Four cyclic loads: P = 10 lb  

Boundary condition: Fixed at the center node (N13) 

 

 
 

Finite Element Model 

To take advantage of the cyclic symmetry, we are going to model only one quarter of the 

structure (4-element model) with the following multi-DOF constraints at node 40 and node 30. 

X40 = -Y30 

Y40 = X30 

Oz40 = Oz30 

We can use Geometry->Multi-DOF Constraints->Generic Constraints menu to define these three 

displacement constraints.  Alternatively, we can directly enter the constraints in a spreadsheet 

from Input Data->Multi-DOF Constraints menu. 
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Results 

To illustrate, the following shows the identical Mz moment diagrams for both 16-element model 

and 4-element model. 

 

 
Reference 

[1]. ADINA Verification Manual, ADINA R & D Inc., Example A.40, June 2001 
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A-16 (Coupled Spring) 

 
Objective 

To verify the behavior of coupled spring which is useful in modeling bridge foundations. 

 

Problem Description 

In the 10 meter column [Ref 1] below, the top is subjected to the loads: Fx = 100.00 (kN), Fy = 

200.00 (kN), Fz = -3000.00 (kN), Mx = 400.00 (kN-m), My = 500.00 (kN-m) and Mz = 600.00 

(kN-m).   

 

Material: E = 3.25e+07 kN/ m2, ν = 0.20. 

Sections: Izz = 0.0104 m4 , Iyy = 0.0417 m4 , J = 0.0286 m4 , A= 0.5 m2 , Ay = 0.4167 m2 , Az = 

0.4167 m2 

 

 
The bottom of the column is supported by a coupled spring with the following stiffness matrix 

terms (see “Calculation of Coupled Spring Stiffness Terms” below) 
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Calculation of Coupled Spring Stiffness Terms 

 

The stiffness matrix terms of the coupled spring used in this example are calculated based on the 

following simplified bridge piers below.  On the left is the full pier (column + foundation) 

model A while on the right is the foundation-only model B.  In order to compute the stiffness 

matrix of the coupled spring, 6 loads in separate load cases (1000 kN for Px, Py and Pz; 1000 

kN-m for Mx, My and Mz) are applied at the bottom of the column in Model B. We first solve 

the model B to obtain displacement matrix (displacements for each of these load cases). 

 

 
 

We then invert the displacement matrix to obtain the stiffness matrix.  Note the stiffness matrix 

is multiplied by 1000 so the stiffness terms are in the right units as shown below.  
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Results 

The nodal displacements in the coupled spring model are very close to those obtained from the 

full model A.  This illustrates that a coupled spring can be used to simplify the modeling of a 

bridge sub-structures effectively. 

 

 Model with a Coupled Spring Full Model A 

 X Y Z X Y Z 

Displacement @ Top (m) 3.961e-02 1.706e-01 -3.667e-02 3.961e-02 1.706e-01 -3.668e-02 

Rotation @ Top (rad) -1.971e-02 6.763e-03 1.629e-02 -1.971e-02 6.763e-03 1.629e-02 

Displacement @ Bottom (m) 2.551e-03 1.261e-02 -3.482e-02 2.554e-03 1.261e-02 -3.483e-02 

Rotation @ Bottom (rad) -1.957e-03 -6.161e-04 7.998e-04 -1.957e-03 -6.159e-04 7.997e-04 
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A-17 (Numerically Challenging Problem) 

 
Objective 

To verify the behavior of quad-precision skyline solver. 

 

Problem Description 

The following 210 meters continuous bridge is discretized into multiple segments: 0.1, 2.9, 

20@3, 0.1, 2.9, 27@3, 0.1, 2.9, 20@3 meters. Each segmented beam is subjected to a uniform 

load of -12.9368 kN/m.   

 

Material: E = 210 kN/mm2, ν = 0.25. 

Sections: Izz = 1.0E12 mm4 , Iyy = 2.58049E11 mm4 , J = 1.0E12 mm4, A= 164800 mm2 , Ay = 

Az = 0.0 mm2 

 

Supports:   

@Node 2: restrained in Dx, Dy, Dz, and Dox 

@Node 24: restrained in Dy, Dz, and Dox.  There is a large support settlement of 368.571 mm 

in Z direction. 

@Node 53: restrained in Dy, Dz, and Dox 

 

 
 

Results 

The following table lists the support reactions at Node 2, 24, and 53. The total support reaction in 

Z direction should be 210 m * 12.9368 kN/m = 2716.728 kN.  As we can see, both double-

precision skyline solver and sparse solver give inaccurate support reaction at node 24.  The 

reason for this inaccuracy is due to the following: 

1. There is a large stiffness variation between adjacent beams at the support  

2. The support settlement is large 

3. Real3D uses penalty approach to enforce support restraints when constructing global 

stiffness matrix.   

This results in large truncation and round off errors with double-precision arithmetic operations 

during the solution.  The quad-precision solver gives accurate support reaction at node 24.   

 

 
Double-precision 

skyline solver 

Double-precision 

sparse solver 

Quad-precision 

skyline solver 

Support Reaction Rz @Node 2 (kN) 197.99 197.99 197.99 

Support Reaction Rz @Node 24 (kN) 1006.31 972.34 1015.12 

Support Reaction Rz @Node 53 (kN) 1503.62 1503.62 1503.62 

Sum of Support Reaction Rz (kN) 2707.92 2673.95 2716.73 
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Static - Shell Element (Bending) 
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B-01 (Plate Patch Test) 

 
Objective 

To verify the plate (MITC4 thick plate formulation) passes the patch test 

 

Problem Description 

A plate of size 0.12 x 0.24 in is subjected to forced displacements at the four corners as shown 

below.  The boundary conditions are:  

w = 1.0e-3(x2 + xy + y2) / 2 

𝜃𝑥 =
𝜕𝑤

𝜕𝑦
= 1.0𝑒−3(𝑦 + 𝑥/2) ; 𝜃𝑦 = −

𝜕𝑤

𝜕𝑥
= 1.0𝑒−3(−𝑥 − 𝑦/2) 

Material properties: E = 1.0e6 psi, ν = 0.25 

Geometry:  nodal coordinates are shown in the parenthesis below, thickness t = 0.001 in 

 
 

Finite Element Model 

5 shell elements 

Model type: 2D Plate Bending (MITC4 thick plate formulation) 

Forced displacements on boundary nodes: 

Units: displacement – in; rotation - rad 

Boundary Nodes Displacement Dz Rotation Dox Rotation Doy 

1 0 0 0 

2 2.88e-5 1.20e-4 -2.40e-4 

3 7.20e-6 1.20e-4 -6.00e-5 

4 5.04e-5 2.40e-4 -3.00e-4 

 

Results 

The displacements of internal nodes can be calculated based on the boundary conditions.  The 

generalized strains and stresses may be calculated as follows:
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𝜙𝑥 =
𝜕2𝑤

𝜕𝑥2 = 1.0𝑒−3; 𝜙𝑦 =
𝜕2𝑤

𝜕𝑦2 = 1.0𝑒−3;  

𝜙𝑥𝑦 = 2
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
= 1.0𝑒−3 

(

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

) =
𝐸𝑡3

12(1 − 𝜈2)
(

1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈)/2

) (

𝜑𝑥

𝜑𝑦

𝜑𝑥𝑦

) = (
1.11𝑒 − 7
1.11𝑒 − 7
3.33𝑒 − 8

) 

The constant stresses are also given by [Ref 1]. 

Units: displacement – in; rotation - rad 

Nodes 
Real3D Theoretical 

Dz Dox Doy Dz Dox Doy 

5 1.40e-6 4.00e-5 -5.00e-5 1.40e-6 4.00e-5 -5.00e-5 

6 1.935e-5 1.20e-4 -1.95e-4 1.935e-5 1.20e-4 -1.95e-4 

7 2.24e-5 1.60e-4 -2.00e-4 2.24e-5 1.60e-4 -2.00e-4 

8 9.60e-6 1.20e-4 -1.20e-4 9.60e-6 1.20e-4 -1.20e-4 

 

Units: moment – lb-in/in 

Real3D [Ref 1] 

Mxx Myy Mxy Mxx Myy Mxy 

1.11e-7 1.11e-7 3.33e-8 1.11e-7 1.11e-7 3.33e-8 

 

Comments 

The results given by Real3D are identical to the theoretical and referenced values. 

 

A patch test consists of creating a small “patch” of elements and then imposing an assumed 

displacement field at the boundary nodes.  The assumed displacement field is chosen such that 

it causes a constant stress in the mesh.  To pass the patch test, computed displacements at the 

interior nodes must be consistent with the assumed displacement field and the computed stresses 

must be constant.  Patch tests are important because they ensure solution convergence—so that 

increasing mesh fineness results in more accurate results. 

 

The MITC4 plate formulation passes the patch test.  The Kirchhoff plate formulation passes the 

patch test if the elements are rectangular.  The Kirchhoff plate formulation is not applicable 

here. 
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Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20 

[2]. Cook, Malkus, Plesha, Witt, “Concept and Applications of Finite Element Analysis” 4th 

Edition, pp238, John Wiley & Sons, Inc., 2002  
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B-02 (Parapet) 

 
Objective 

To verify the plate (Kirchhoff thin plate formulation) element under constant twist 

 

Problem Description 

A plate of size 240 x 240 in is subjected to a transverse point load of -10,000 lb at a corner D as 

shown below.  The boundary lines AB and AC are simply supported.  

Material properties: E = 2.9e+007 psi, ν = 0.30 

Thickness t = 10 in 

 
 

Finite Element Model 

100 shell elements 

Model type: 2D Plate Bending (Kirchhoff thin plate formulation) 

 

Results 

The displacements, internal forces, and moments may be calculated as follows [Ref 1]: 

𝑀𝑥𝑥 = 𝑀𝑦𝑦 = 0;  

𝑀𝑥𝑦 = −𝑃/2 = −5,000 lb-in/in 

𝑉𝑥𝑥 = 𝑉𝑦𝑦 = 0 

𝑤𝐷 =
𝑃𝑥𝑦

2(1−𝜈)

12(1−𝜈2)

𝐸𝑡3 = −0.1549 in
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Units: displacement – in; moment – lb-in/in 

Real3D [Ref 1] 

Moment Mxy 
Displacement Dz @ 

point D 
Moment Mxy 

Displacement Dz @ 

point D 

5,000 -0.1549 5,000 -0.1549 

 

Comments 

The results given by Real3D are identical to the theoretical values. 

This is an interesting problem which has practical applications (such as parapet at the corner of a 

building).  It shows that a plate structure may have pure twist Mxy (Mxx = Myy = 0).  

Generally, for a homogeneous material such as steel, the strength should be checked based on 

principal stresses.  For a non-homogeneous material such as concrete, the strength should be 

checked based on principal moments (not just Mxx and Myy). In this example, reinforcement 

should be placed as shown below.  The solid lines represent the top reinforcement while the 

dashed lines do the bottom reinforcement. 

 
 

In practical applications for concrete slabs, reinforcement placed based on principal moments 

will be difficult.  Alternative methods are available.  One of these methods is the so-called 

Wood-Armer method [Ref 2].  It takes into account Mxy as well as Mxx and Myy for 

calculating top and bottom reinforcement in two orthogonal directions x and y. 

 

Reference 

[1]. Z.L Xu, “Elastic Mechanics” 3rd Ed., pp58, High Education Publishing House, China 1994 

ISBN 7-04-002893-X/TB.159 

[2]. Park & Gamble “Reinforced Concrete Slab”, pp202, John Wiley & Sons, Inc., 1980 
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B-03 (Morley Skew Plate) 

 
Objective 

To verify the behavior of the MTC4 thick plate bending element in a skew shape 

 

Problem Description 

A skewed, simply supported plate is loaded with a uniform pressure load of 1 psi. 

Material properties: E = 1e5 psi, ν = 0.3 

Geometric properties: L = 100 in, h = 1 in 

 

 
 

Finite Element Model 

16, 64, 256, 1024 shell elements 

Model type: 2D Plate Bending (MITC4 thick plate formulation) 

 

Results 

The displacement at the plate center (C) is given by [Ref 1]. 

Unit: displacement - in 

Displacement Dz Real3D  [Ref 1] 

4 x 4 mesh 3.9182 3.9182 

8 x 8 mesh 3.8991 3.8991 

16 x 16 mesh 4.1875 4.1875 

32 x 32 mesh 4.4098 4.4098 

 

Comments 

The displacements given by Real3D are identical to the referenced values.  The correct 

theoretical displacement is given as 4.640 in. 

 

Reference 
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[1]. Sa, Jorge, Valente and Areias “Development of shear locking-free shell elements using an 

enhanced assumed strain formulation”, International Journal of Numerical Methods in 

Engineering, 2002; 53: 1721-1750  
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B-04 (Fixed Rectangle) 

 
Objective 

To verify the behavior of the MTC4 thick plate and the Kirchhoff thin plate bending elements 

 

Problem Description 

A 3.2 x 2 in rectangular plate is fixed on all edges and subjected to a uniform pressure of q = -1e-

4 psi as shown below. 

Material properties: E = 1.7472e7 psi, ν = 0.3 

Thickness: t = 1e-4 in 

 

 
 

Finite Element Model 

100 shell elements 

Model type: 2D Plate Bending (MITC4 thick plate and Kirchhoff thin plate) 

 

Results 

The displacements and stresses are compared with those produced by another program, ADINA.  

Theoretical results are calculated as follows [Ref 1]: 

Displacement @ center: 𝐷𝑧 =
0.0251∗𝑞𝑏4

𝐸𝑡3
= 2.299in 

Stress @ center of long edge: 𝜎𝑦 =
0.4680∗𝑞𝑏2

𝑡2 = 1.872𝑒4 psi 

Stress @ center: 𝜎𝑦 =
0.2286∗𝑞𝑏2

𝑡2 = 9.144𝑒3 psi
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Units: displacement – in; rotation – rad; stress - psi 

 

Real3D 

ADINA Theoretical MITC4 

(thick) 

Kirchhoff 

(thin) 

Displacement Dz @ center -2.274 -2.342 -2.274 -2.299 

Max Rotation Dox 3.653 3.608 3.653 - 

Max Rotation Doy 2.502 2.373 2.502 - 

Stress Sxx @ center of short edge 7507 12927 7507 - 

Stress Sxx @ center -4880 -4763 -4880 - 

Stress Syy @ center of long edge 13478 18743 13478 18720 

Stress Syy @ center -9143 -9483 -9143 -9144 

Max Stress Sxy 2556 2459 2556 - 

 

Comments 

The results given by Real3D using the MITC4 are identical to those given by another reputable 

finite element program, ADINA.  The results also compare well with the theoretical results 

based on the thin plate theory.  The stress prediction of the MITC4 thick plate at the boundary 

is less accurate than that of the Kirchhoff thin plate.  This is because the stresses at element 

nodes are more representative of element center stresses for MITC4 plate formulation. A much 

finer meshing would be needed to capture nodal stresses accurately at the boundary. 

 

One way to work around this is to calculate the element nodal stresses at the boundary based on 

the support reactions.  For example, to calculate the stress Sxx at the center of the short edge, 

we first find the support reaction at the center node of the short edge Roy = -4.467e-06 lb-in, 

then divide it by the tributary length of 0.2 in which gives linear moment Mxx = 2.234e-5 lb-

in/in.  Then the Sxx stress is calculated as the following: 

Mxx / (t^2 / 6) = 2.234e-5 / (0.0001^2 / 6) = 13404 psi. 

 

Similarly, to calculate the stress Syy at the center of the long edge, we first find the support 

reaction at the center node of the long edge Rox = -9.991e-06 lb-in, then divide it by the tributary 

length of 0.32 in which gives linear moment Myy = 3.122e-5 lb-in/in.  Then the Syy stress is 

calculated as the following: 

Myy / (t^2 / 6) = 3.122e-5 / (0.0001^2 / 6) = 18732 psi (very close to the theoretical 18720 psi). 
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The following illustrates displacement and stress contours (not smoothed) based on the MITC4 

thick plate. 

 

 
Dz Displacement Contour 

 
Dox Displacement Contour 
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Doy Displacement Contour 

 
Sxx Stress Contour 
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Syy Stress Contour 

 
Sxy Stress Contour 

 

Reference 

[1]. Roark & Yong, “Formulas for Stress and Strain” 5th Ed, pp392, McGraw-Hill Inc., 1975 
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B-05 (Design Strip) 

 
Objective 

To verify the calculation of shell nodal group resultants and compare them to ACI 318 

Equivalent Frame Method. 

 

Problem Description 

 

Determine design moments for the following slab system in the transverse direction for an 

intermediate floor with a story height of 9 ft. [Ref 1] 

Columns: 16 x 16 in., fc = 6 ksi 

Floor thickness: 7 in., fc = 4 ksi 

Dead load: -107.5 lb/ft2;  Live load: -40 lb/ft2 

Load combination: 1.4 * Dead + 1.7 * Live 

Design strip width: 14 ft 

 
Finite Element Model 

 

Model type: 3D Frame and Shell (MITC4 thick plate and Kirchhoff thin plate) 

 

A mesh size of 1 ft x 1 ft is used for all elements except for the edge elements.  The upper and 

lower columns are fixed at the far ends.  Shell nodal resultant groups are defined along the 

transverse direction of a middle design strip with a width of 14 ft (7 ft on each side of the column 

line).  Real3D offers Geometry | Generate Slab Strip Groups command to generate these shell 

nodal resultant groups automatically. 
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Results 

 

After performing the analysis, the shell nodal resultants are available in Analysis Results | Shell4 

Group Nodal Resultants.  

 

 
 

We can then copy the moments at all nodal resultant groups to a spreadsheet with some attention 

to moment signs. The following is the graph generated in Microsoft Excel. 
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The comparison of results between Real3D and Ref 1 is fairly good.  The reference uses ACI 

318 Equivalent Frame Method which is an approximate method. 

 

Unit: moments – kip-fts 

 
Real3D 

[Ref 1] 
Thin Plate Thick Plate 

End Span Exterior Negative -43.6 -41.3 -52.7 

End Span Positive 56.2 57.3 50.0 

End Span Interior Negative -93.7 -94.2 -95.2 

Interior Span Negative -86.1 -86.4 -86.4 

Interior Span Positive 37.4 37.0 37.5 

 

Reference 

 

[1]. Example 22.1, “Notes on ACI 318-99 Building Code Requirements for Structural Concrete”, 

7th Edition, Portland Cement Association, 1999 
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Static - Shell Element (Membrane) 
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C-01 (Membrane Patch Test) 

 
Objective 

To verify membrane formulations passing the patch test 

 

Problem Description 

A plate of size 0.24 x 0.12 in is subjected to forced displacements at the four corners as shown 

below.  The boundary conditions are: u = 10-3(x + y / 2); v = 10-3(y + x / 2) 

Material properties: E = 1.0e6 psi, ν = 0.25 

Geometry:  nodal coordinates are shown in the parenthesis below, thickness t = 0.001 in 

 
 

Finite Element Model 

5 shell elements 

Model type: 2D Plane Stress 

Forced displacements on boundary nodes: 

Unit: displacement - in 

Boundary Nodes Displacement Dx Displacement Dy 

1 0 0 

2 2.4e-4 1.2e-4 

3 6.0e-5 1.2e-4 

4 3.0e-4 2.4e-4 

 

Results 

The displacements of internal nodes can be calculated based on the boundary conditions.  The 

constant strains may be calculated as follows: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= 1.0𝑒−3, 𝜀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
= 1.0𝑒−3 

𝜀𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= 1.0𝑒−3  
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Constant stresses may be calculated accordingly and are given in [Ref 1]. 

Unit: displacement - in 

Internal Node 
Real3D Theoretical 

Displacement Dx Displacement Dy Displacement Dx Displacement Dy 

5 5.00e-5 4.00e-5 5.00e-5 4.00e-5 

6 1.95e-4 1.20e-4 1.95e-4 1.20e-4 

7 2.00e-4 1.60e-4 2.00e-4 1.60e-4 

8 1.20e-4 1.20e-4 1.20e-4 1.20e-4 

 

Unit: stress - psi 

Real3D [Ref 1] 

Stress Sxx Stress Syy Stress Sxy Stress Sxx Stress Syy Stress Sxy 

1333 1333 400 1333 1333 400 

 

Comments 

The results given by Real3D are identical to the theoretical and referenced values. 

 

A patch test consists of creating a small “patch” of elements and then imposing an assumed 

displacement field at the boundary nodes.  The assumed displacement field is chosen such that 

it causes a constant stress in the mesh.  To pass the patch test, computed displacements at the 

interior nodes must be consistent with the assumed displacement field and the computed stresses 

must be constant.  Patch tests are important because they ensure solution convergence—so that 

increasing mesh fineness results in more accurate results. 

 

Both compatible and incompatible membrane formulations pass the patch test. 

 

Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20 

[2]. Cook, Malkus, Plesha, Witt, “Concept and Applications of Finite Element Analysis” 4th 

Edition, pp238, John Wiley & Sons, Inc., 2002  
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C-02 (Slender Cantilever) 

 
Objective 

To verify membrane formulation of the shell element using regular and irregular element shapes 

 

Problem Description 

The slender cantilever beam shown below is modeled with a). regular shape elements; b). 

trapezoidal shape elements; c). parallelogram shape elements.  Trapezoidal and parallelogram 

shapes take 450 angle.  All elements have equal volume. 

Material properties: E = 1.0e7 psi, ν = 0.3 

Section properties: Length = 60 in, height = 0.2 in, thickness t = 0.1 in 

Loads: a). unit axial force; b). unit in-plane shear 

 

 
 

Finite Element Model 

6 shell elements 

Model type: 2D Plane Stress 

 

Results 

The tip displacements are given by [Ref 1].  Theoretical stresses at the root are also given here 

for comparison.
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Units: displacement – in; stress - psi 

Element Load type 

Real3D [Ref 1] 

Displacements 

@ tip 

Stresses @ 

root 

Displacements 

@ tip 
Stresses @ root 

Compatible 

Regular 

Axial force 3.0e-5 -50 3.0e-5 -50 

In-plane shear -0.01009 -846.2 0.1081 -9000 

Incompatible 

Regular 

Axial force 3.0e-5 -50 3.0e-5 -50 

In-plane shear -0.1073 -8250.0 0.1081 -9000 

Incompatible 

Trapezoidal 

Axial force 3.0e-5 -50 3.0e-5 -50 

In-plane shear -0.02385 -7071.6 0.1081 -9000 

Incompatible 

Parallelogram 

Axial force 3.0e-5 -50 3.0e-5 -50 

In-plane shear -0.08608 -6510.1 0.1081 -9000 

 

Comments 

The results given by Real3D are mixed in comparison with the referenced values. 

 

All meshes behave correctly in the axial force loading.  For in-plane shear, the regular mesh 

using incompatible membrane formulation behaves the best.  The behavior of the regular mesh 

using compatible formulation and the irregular mesh using compatible or incompatible 

formulation can be improved by using more elements.  In practice, a rectangular element shape 

with small aspect ratio should be used whenever possible. 

 

Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20  
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C-03 (Bathe Membrane Nodal Resultants) 

 
Objective 

To verify the calculation of nodal resultants for compatible membrane formulation  

 

Problem Description 

The cantilever plate shown below is modeled with 2 x 2 mesh using compatible membrane 

formulation. 

Material properties: E = 2.7e6 psi, ν = 0.3 

Thickness t = 0.1 cm 

 
 

Finite Element Model 

4 shell elements 

Model type: 2D Plane Stress (using compatible formulation) 

 

Results 

The nodal resultants given by Real3D are identical to those given by [Ref 1]. 

As shown below, the nodal resultants are displayed in two lines at each node of each element.  

The first line denotes the local x component and the second line does the local y component.  
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The unit is N. 

 
 

Comments 

The results given by Real3D are identical to the referenced values. 

The nodal resultants represent forces that hold each element in equilibrium.  Finite element 

solutions must always satisfy nodal point equilibrium and element equilibrium.  This is true 

whether a coarse or fine mesh is employed. 

 

Reference 

[1]. Bathe, “Finite Element Procedures”, pp. 179, Prentice-Hall, Inc., 1996 
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C-04 (Cook Membrane Problem) 

 
Objective 

To verify compatible and incompatible membrane formulations 

 

Problem Description 

The skewed cantilever plate shown below is subjected to a distributed shear of 1 lb at the end. 

Material properties: E = 1.0 psi, ν = 0.333 

Thickness t = 1 in 

 
 

Finite Element Model 

4 shell elements 

Model type: 2D Plane Stress (using compatible and incompatible formulations) 

 

Results 

The best results are given by [Ref 1] as follows: 

Displacement Dy @ C:  23.9 in 

Principal stress S1 @ A:  0.236 psi 

Principal stress S2 @ B: -0.201 psi
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Units: displacement – in; stress - psi 

 Compatible formulation Incompatible formulation 

 
Displacement 

Dy @ C 

Principal 

Stress S1 

@ A 

Principal 

Stress S2 

@ B 

Displacement  

Dy @ C 

Principal 

Stress S1 

@ A 

Principal 

Stress S2 

@ B 

2 x 2 

mesh 
11.85 0.1078 -0.07762 21.05 0.1789 -0.1694 

64x64 23.92 0.2376 -0.2038 23.96 0.2368 -0.2035 

[Ref 1] 23.9 0.236 -0.201 23.9 0.236 -0.201 

 

Comments 

The results given by Real3D are compared with the referenced values.  For the 2 x 2 coarse 

mesh, the incompatible formulation is superior to the compatible one.  For the 64 x 64 fine 

mesh, both compatible and incompatible formulations give satisfactory results. 

 

Reference 

[1]. Bergan & Filippa, “Triangular membrane element with rotational degrees of freedom”, 

Comput. Meth. Appl. Mech. Engng., 50: 25-69, 1985 
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Static - Shell Element 
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D-01 (Bathe Membrane + Beam) 

 
Objective 

To verify the combinational behavior of compatible membrane and beam elements 

 

Problem Description 

An 8 x 12 cm plate is fixed on three sides.  It is reinforced with a bar element in the middle as 

shown below.  The free end of the bar is subjected to a horizontal force of 6000 N. 

Material properties: E = 30e6 N/cm2, ν = 0.30 

Plate thickness t = 0.1 cm 

Bar cross sectional area = 1 cm2 

 

 
 

Finite Element Model 

2 shell elements + 1 beam element 

Model type: 3D Frame & Shell (use compatible membrane formulation) 

 

Results 

The tip displacement of the bar given by Real3D is compared with that given by [Ref 1] as 

follows: 

Unit: displacement - cm 

 Real3D [Ref 1] 

Tip displacement Dx @ N4 9.34e-4 9.34e-4 
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Comments 

The result given by Real3D is identical to the referenced value. 

 

Reference 

[1]. Bathe, “Finite Element Procedures”, pp361, Prentice-Hall, Inc., 1996 
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D-02 (Curved Beam) 

 
Objective 

To verify the shell element using incompatible membrane and the MITC4 thick plate 

formulations 

 

Problem Description 

The curved beam shown below [Ref 1] is fixed at the bottom and loaded with two sets of loads at 

the tip: 1.0 lbf in-plane shear and 1.0 lbf unit out-of-plane shear. 

Material properties: E = 1.0e7 psi, ν = 0.25 

Plate thickness t = 0.1 in 

Curved beam inner radius = 4.12 in, outer radius = 4.32 in, arc = 90o 

 

 
 

Finite Element Model 

6 shell elements 

Model type: 3D Frame & Shell (use incompatible membrane and MITC4 thick plate 

formulations) 

 

Results 

The tip displacements in the direction of loads given by Real3D are compared with that given by 

[Ref 1] as follows: 

Unit: displacement - in 

Displacement in load direction Real3D [Ref 1] 

In-plane shear (in) 0.07751 0.08734 (see Note) 

Out-of-plane shear (in) 0.4798 0.5022 

Note:  The displacement given by [Ref 1] is smaller than the theoretical calculation based on 

the following [Ref 2]:
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 𝑅𝑎𝑣𝑔 =
4.32+4.12

2
= 4.22 in 

𝐼 =
0.1∗0.23

12
= 6.66667𝑒 − 5 in4 

𝐷𝑦 =
𝜋/4∗𝑃∗𝑅𝑎𝑣𝑔

3

𝐸𝐼
= 0.08853 in 

Comments 

The results given by Real3D are very good considering the very coarse mesh employed.  We 

would obtain better results if more elements were used along the beam length. 

 

Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20 

[2]. Roark & Yong, “Formulas for Stress and Strain” 5th Ed, pp215, McGraw-Hill Inc., 1975  
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D-03 (Pinched Cylinder) 

 
Objective 

To verify the membrane and bending behavior of the shell element in a curved structure 

 

Problem Description 

A thin cylindrical shell with diaphragm boundary conditions at both circular ends is loaded with 

two opposed point loads at the center of the surface. 

Material properties: E = 3.0e6 psi, ν = 0.3 

Geometric properties: L = 600 in, R = 300 in, t = 3 in 

Load: P = 1.0 lb 

 

 

 
 

Finite Element Model 

144 shell elements. Due to symmetry, one eighth of the cylinder is modeled with a12x12 mesh 

Boundary conditions: 

Edge N1-N13: Dz, Dox, Doy fixed 

Edge N1-N157: Dy, Dox, Doz fixed 

Edge N13-N169: Dx, Doy, Doz fixed 

Edge N157-N169: Dx, Dy, Doz fixed 

Note: N13 is restrained in Dx, Dz, Dox, Doy, Doz. 

 

Model type: 3D Frame and Shell 

 

Results 

The deflection under load is given by [Ref 1] as Dy = -1.825e-5 in.
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Unit: displacement - in 

Real3D [Ref 1] 

Displacement under load using different shell formulations 

-1.825e-005 

Compatible membrane Incompatible membrane 

Kirchhoff MITC4 Kirchhoff MITC4 

-1.819e-005 -1.595e-005 -1.833e-005 -1.605e-005 

 

Comments 

The results given by Real3D are comparable to the referenced values. 

 

It appears that the Kirchhoff thin plate bending formulation yields results close to the referenced 

values.  This is especially true when plate/shell thickness is very thin.  Of course, we have to 

remember that the Kirchhoff plate only applies to rectangular shell elements. 

 

Reference 

[1]. Cook, Malkus, Plesha, Witt, “Concept and Applications of Finite Element Analysis” 4th 

Edition, pp583, John Wiley & Sons, Inc., 2002  
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D-04 (Scordelis-Lo Roof) 

 
Objective 

To verify the membrane and bending behavior of the shell element in a curved structure 

 

Problem Description 

The Scordelis-Lo barrel roof below [Ref 1, Ref 2] has a length of 50 ft, a radius of 25 ft, and a 

sweeping angle of 80 degrees.  The roof is supported on rigid diaphragms along its two curved 

edges (Dx and Dy fixed, but not Dz). The two straight edges are free.  A surface load of -90 

lb/ft^2 in the global Y direction (self-weight) is applied to the entire roof. 

Material: E = 4.32e8 lb/ft^2 (3e6 psi); v = 0.0; 

Thickness: t = 0.25 ft. 

 

 
 

Finite Element Model 

36 shell elements 

Due to symmetry, one quarter of the roof is modeled with a 6x6 mesh. The boundary conditions 

are specified in the following table. 

Nodes Fixed DOFs 

N1 to N6 Z, OX, OY 

N7 X, Z, OX, OY, OZ 

N14, N21, N26, N35, N42 X, OY, OZ 

N43 to N48 X, Y, OZ 

N49 X, Y, OY, OZ 

 

Model type: 3D Frame and Shell 
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Results 

The results given by Real3D compare well with benchmark values. 

Units: displacement – ft; stress - ksf 

 

Displacement 

Dy@ N1 

 

Displacement  

Dx @ N1 

 

Top 

Principal 

Stress S1 @ 

N7 

Bottom 

Principal 

Stress S2 @ 

N7 

Top 

Principal 

Stress S1 @ 

N1 

Bottom 

Principal 

Stress S1 @ 

N1 

MITC4 

Compatible 
-0.291 -0.153 171.74 -197.69 242.55 349.35 

MITC4 

Incompatible 
-0.307 -0.162 183.97 -210.78 225.09 352.77 

Kirchhoff 

Compatible 
-0.290 -0.153 174.88 -200.62 238.73 351.68 

Kirchhoff 

Incompatible 
-0.306 -0.161 187.55 -214.41 224.46 352.69 

Benchmark 

Value 
-0.302 -0.159 191.23 -218.74 215.57 340.70 

 

Comments 

The results given by Real3D are comparable to the referenced values. 

 

Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20 

[2]. Scordelis & Lo, “Computer Analysis of Cylindrical Shells”, Journal of the American 

Concrete Institute, Volume 61, May, 1964 
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D-05 (Hemispherical Shell with Point Loads) 

 
Objective 

To verify the membrane and bending behavior of the MITC4 shell element in a doubly-curved, 

very thin shell structure 

 

Problem Description 

The hemispherical shell below [Ref 1] has a radius of 10 ft and a thickness of 0.04 ft.  The 

equator is a free edge and is loaded with four 2-kip point loads alternating in sign at 90 degrees 

intervals.  The edge of the hole at the top (72 degrees from the axis of revolution) is free. 

Material: E = 6.825e7 kip/ft^2; v = 0.3; 

Thickness: t = 0.04 ft; 

Radius R = 10 ft. 

 

 
 

Finite Element Model 

8 x 32, 16 x 64 and 32 x 128 shell elements 

For simplicity of boundary conditions, symmetry of the structure is not considered.  The 

boundary restraints are applied to prevent instability of the structure. 

 

Model type: 3D Frame and Shell 

 

Results 

The results given by Real3D compare well with benchmark values. 

Units: displacement – ft 
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Radial displacement at load point 

 8 x 32 mesh 16 x 64 mesh 32 x 128 mesh 

MITC4 

Compatible 
9.272e-2 9.289e-2 9.334e-2 

MITC4 

Incompatible 
9.292e-2 9.313e-2 9.346e-2 

Benchmark 

Value 
9.400e-2 9.400e-2 9.400e-2 

 

Comments 

The results given by Real3D are comparable to the benchmark values. 

This problem is one of the more challenging benchmark tests for shell elements.  The reason is 

that the shell is doubly curved and shell thickness is very small in comparison with its span 

(radius).  Both membrane and bending strains contribute significantly to the radial displacement 

at the load point.  This example shows the superiority of the MITC4 shell element. 

We could have taken advantage of the symmetry and only model one quadrant of the structure.  

The boundary condition requires a little more thinking but is still straightforward in this case.  

An example is included with the program to illustrate this approach. 

 

Modeling Tips 

The most efficient way to construct this model in the program is as follows.  First generate arc 

members using the command Geometry | Generate | Arc Members.  Then use Edit | Revolve | 

Revolve Members to Shells command to generate doubly curved shell elements. 

 

Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20 
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Static - Brick Element 
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E-01 (Slender Brick Beam) 

 
Objective 

To verify compatible and incompatible brick formulations using regular element shapes 

 

Problem Description 

The slender cantilever beam shown below is modeled with 6 rectangular brick elements. 

Material properties: E = 1.0e7 psi, ν = 0.3 

Section properties: Length = 60 in, height = 0.2 in, thickness t = 0.1 in 

Loads: a). unit axial force; b). unit in-plane shear 

 

 
 

Finite Element Model 

6 brick elements 

Model type: 3D Brick 

 

Results 

The tip displacements are given by [Ref 1].  Theoretical stresses at the root are also given here 

for comparison. 

Units: displacement – in; stress - psi 

Element Load type 

Real3D [Ref 1] 

Displacements 

@ tip 

Stresses @ 

root 

Displacements 

@ tip 
Stresses @ root 

Compatible 
Axial force 3.0e-5 -50 3.0e-5 -50 

In-plane shear -0.01007 -854.0 0.1081 -9000 

Incompatible 
Axial force 3.0e-5 -50 3.0e-5 -50 

In-plane shear -0.1072 -8173 0.1081 -9000 

 

Comments 

The results given by Real3D are mixed in comparison with the referenced values. 

 

Compatible and incompatible formulations behave correctly in the axial force loading.  For in-

plane shear, the incompatible brick formulation yields much better results than the compatible 

one.  In practices, finer meshes should be used to achieve satisfactory results, especially for 

compatible brick elements.  
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Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20  
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E-02 (Curved Brick Beam) 

 
Objective 

To verify the incompatible brick element in a curved structure 

 

Problem Description 

A curved beam as shown below [Ref 1] is fixed at the bottom and loaded with two sets of loads 

at the tip: 1.0 lbf in-plane shear and 1.0 lbf out-of-plane shear. 

Material properties: E = 1.0e7 psi, ν = 0.25 

Plate thickness t = 0.1 in 

Curved beam inner radius = 4.12 in, outer radius = 4.32 in, arc = 90o 

 

 
 

Finite Element Model 

6 brick elements 

Model type: 3D Brick (use incompatible formulations) 

 

Results 

The tip displacements in the direction of loads given by Real3D are compared with that given by 

[Ref 1] as follows: 

Unit: displacement - in 

Displacement in load 

direction 

Real3D 
[Ref 1] 

6 x 1 mesh 20 x 1 mesh 

In-plane shear (in) 0.07682 0.08814 0.08734 (see Note) 

Out-of-plane shear (in) 0.4116 0.4797 0.5022 
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Note:  The displacement given by [Ref 1] is smaller than the theoretical calculation based on 

the following [Ref 2]: 

 𝑅𝑎𝑣𝑔 =
4.32+4.12

2
= 4.22 in 

𝐼 =
0.1∗0.23

12
= 6.66667𝑒 − 5 in4 

𝐷𝑦 =
𝜋/4∗𝑃∗𝑅𝑎𝑣𝑔

3

𝐸𝐼
= 0.08853 in 

 

Comments 

The results given by Real3D are very good considering the relatively coarse meshes employed.  

We would obtain better results if more elements were used along the beam length. 

 

Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20 

[2]. Roark & Yong, “Formulas for Stress and Strain” 5th Ed, pp215, McGraw-Hill Inc., 1975  
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E-03 (Incompatible Brick) 

 
Objective 

To verify the behavior of incompatible brick formulations using irregular meshes 

 

Problem Description 

A straight beam with distorted and trapezoidal elements is subjected to two sets of loading: a). 

end moments; b). end shear. 

Material properties: E = 1500 psi, ν = 0.25 

Geometric properties: L = 10 in, h = 2 in, t = 1 in 

Loads: a). F = 1000 lb; b). P = 300 lb 

 

 
 

Finite Element Model 
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5 brick (incompatible) elements 

Model type: 3D Brick 

 

Results 

The displacements and stresses are given by [Ref 1].  The stresses given for Real3D below are 

the average values at the top four nodes of each of the elements at the supports. 

Unit: displacement – in; stress - psi 

Mesh Loading 

Real3D Ref 1 (Theoretical) 

Displacements 

@ tip 

Stresses @ 

root 

Displacements 

@ tip 
Stresses @ root 

Distorted 

Moment 95.80 -2471 
95.8 

(100) 

-3015 

(3000) 

Shear 97.90 -3223 
97.9 

(102.6) 

-4138.5 

(-4050) 

Trapezoidal 

 

Moment 76.27 -2503 
76.252 

(100) 

-2883.5 

(3000) 

Shear 80.16 -3309 
80.115 

(102.6) 

-3860 

(-4050) 

 

Comments 

The displacements given by Real3D are almost identical to the referenced values.  The stresses 

are calculated by averaging the top four nodes of each element at the root.  The stresses  given 

by Real3D are different from the referenced values due to different methods used in stress 

calculation.  The correct theoretical displacements and stresses are given in parenthesis in the 

table. 

 

Reference 

[1]. Wilson, Ibrahimbegovic, “Use of incompatible displacement modes for the calculation of 

element stiffness or stresses”, Finite Elements in Analysis and Design 7 (1990) 229-241 
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E-04 (Brick Patch Test) 

 

Problem Description 

 

This is a patch test for a unit cube [Ref 1].  The cube is modeled with 7 eight-node brick 

elements.  Nodal coordinates, element connectivity, and boundary conditions are given in the 

following tables.  Boundary conditions are given as forced displacements.  No additional loads 

are prescribed. 

Material:  E = 1.e6 psi; ν = 0.25 

Find stresses for each element. 

 
 

Nodal coordinates (inch) 

 

 
 

Displacement field 

u = 0.001 * (2x + y + z) / 2 

v = 0.001 * (x + 2y + z) / 2 

w = 0.001 * (x + y + 2z) / 2 

Forced displacements (inch) on boundary 

 

 
All strains are constant. For example 𝜀𝑥 =

𝜕𝑢

𝜕𝑥
= 0.001 

𝜀𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= 0.001 

 

 

  

Node X Y Z 

1 0.249 0.342 0.192 

2 0.826 0.288 0.288 

3 0.85 0.649 0.263 

4 0.273 0.75 0.23 

5 0.32 0.186 0.643 

6 0.677 0.305 0.683 

7 0.788 0.693 0.644 

8 0.165 0.745 0.702 

9 0 0 0 

10 1 0 0 

11 1 1 0 

12 0 1 0 

13 0 0 1 

14 1 0 1 

15 1 1 1 

16 0 1 1 

 

NODE Dx Dy Dz 

9 0 0 0 

10 0.001 0.0005 0.0005 

11 0.0015 0.0015 0.001 

12 0.0005 0.001 0.0005 

13 0.0005 0.0005 0.001 

14 0.0015 0.001 0.0015 

15 0.002 0.002 0.002 

16 0.001 0.0015 0.0015 
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Element Connectivity 

 

Element Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 

1 1 2 3 4 5 6 7 8 

2 4 3 11 12 8 7 15 16 

3 9 10 2 1 13 14 6 5 

4 2 10 11 3 6 14 15 7 

5 9 1 4 12 13 5 8 16 

6 9 10 11 12 1 2 3 4 

7 5 6 7 8 13 14 15 16 

 

Results 

The displacements of internal nodes can be calculated based on the boundary conditions.  The 

constant stresses are also given by [Ref 1]. 

Units: nodal displacement – in 

Nodes 

Real3D 

(compatible and incompatible) 
Theoretical 

Dx Dy Dz Dx Dy Dz 

1 5.16E-04 5.63E-04 4.88E-04 5.16E-04 5.63E-04 4.88E-04 

2 1.11E-03 8.45E-04 8.45E-04 1.11E-03 8.45E-04 8.45E-04 

3 1.31E-03 1.21E-03 1.01E-03 1.31E-03 1.21E-03 1.01E-03 

4 7.63E-04 1.00E-03 7.42E-04 7.63E-04 1.00E-03 7.42E-04 

5 7.35E-04 6.68E-04 8.96E-04 7.35E-04 6.68E-04 8.96E-04 

6 1.17E-03 9.85E-04 1.17E-03 1.17E-03 9.85E-04 1.17E-03 

7 1.46E-03 1.41E-03 1.38E-03 1.46E-03 1.41E-03 1.38E-03 

8 8.89E-04 1.18E-03 1.16E-03 8.89E-04 1.18E-03 1.16E-03 

 

Units: element stress - psi 

 Sxx Syy Szz Sxy Syz Sxz 

Real3D 
(compatible) 1999.982 1999.982 1999.982 399.999 399.999 399.999 

Real3D 
(incompatible) 1999.978 1999.978 1999.978 399.998 399.998 399.998 

[Ref. 1] 2000 2000 2000 400 400 400 

 

Element nodal resultants are compared against with those from SAP2000.  The following table 

lists the nodal resultants for the inner-most element (brick element id = 1).  
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Units: nodal resultants (inner-most element) - lb 

Nodes 

Real3D 

(compatible and incompatible) 
SAP2000 

Fx Fy Fz Fx Fy Fz 

1 -137.726 -158.484 -178.233 -137.73 -158.49 -178.23 

2 46.026 -119.278 -102.478 46.03 -119.28 -102.48 

3 102.197 111.746 -54.735 102.2 111.75 -54.74 

4 -77.321 87.284 -115.667 -77.32 87.28 -115.67 

5 -110.243 -124.015 45.588 -110.24 -124.02 45.59 

6 88.898 -63.214 112.401 88.9 -63.22 112.4 

7 141.538 156.01 172.556 141.54 156.01 172.56 

8 -53.368 109.953 120.567 -53.37 109.95 120.57 

 

Comments 

 

Both compatible and incompatible brick elements pass the patch test.  Therefore, “the results 

for any problem solved with the element will converge toward the correct solution as the 

elements are subdivided.” [Ref. 1]  The tiny differences in stresses are due to the penalty 

approach employed in support enforcement during solution. 

 

Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20 
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E-05 (Hemispherical Shell with Point Loads) 

 
Objective 

To verify the behavior of the incompatible brick element in a doubly-curved, very thin shell 

structure 

 

Problem Description 

This problem is the same as problem D-05.  Only this time we are using the 3D brick element 

instead of the MITC4 shell element to model the structure. 

 

 
 

Finite Element Model 

48 x 48 x 1 incompatible brick elements 

Due to symmetry of the structure, we model only a quadrant of the structure.  Restraints in the 

direction of global X and Z are applied to the quadrant lines respectively.  A single vertical 

restraint is applied at the center of the quadrant equator.  This is to prevent instability of the 

structure. 

 

Model type: 3D Brick 

 

Results 

The result given by Real3D compares well with benchmark values. 

Units: displacement – ft 

 

Radial displacement at load point 
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 48 x 48 x 1 mesh 

Incompatible brick element 9.262e-2 

Benchmark 

Value 
9.400e-2 

 

Comments 

The result given by Real3D is comparable to the benchmark value. 

This problem is one of the more challenging benchmark tests for solid elements.  The reason is 

that the shell is doubly curved and shell thickness is very small in comparison with its span 

(radius).  We used a relatively fine mesh so the element aspect ratio (8:7:1) would not be too 

large.  Also, we used incompatible brick element formulation.  Compatible brick element 

formulation would be too stiff for this mesh model. 

 

Modeling Tips 

The most efficient way to construct this model in the program is as follows (see the figures 

below).  First generate two sets of side arc members using the command Geometry | Generate | 

Arc Members.  Then create one shell element at the top using the nodes on the arc members.  

Delete all generated members.  Now use Geometry | Generate | Shells by Nodes to generate 7 

more shell elements using the existing nodes on the arcs.  Lastly, use Edit | Revolve | Revolve 

Shells to Bricks command to generate brick elements.  This method simplifies the generation 

procedure. 
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Reference 

[1]. MacNeal & Harder, “A Proposed Standard Set of Problems to Test Finite Element 

Accuracy”, Finite Elements in Analysis and Design, 1 (1985) 3-20 
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F-01 (Simple 2D Frame Vibration) 

 
Objective 

To verify the behavior of beam element vibration 

 

Problem Description 

A right-angle frame [Ref 1] vibrates under its own weight as shown below.  

Material properties: E = 2e11 Pa, ν = 0.29, ρ = 7860 Kg/m3 

Section properties: square section 100 x 100 mm 

 

 
 

Finite Element Model 

50 beam elements 

Model type: 2D Frame (shear deformation considered) 

 

Results 

The mode frequencies are given by [Ref 1] 

Unit: mode frequency - Hz 

Mode Frequency Real3D [Ref 1] 

Mode 1 3.331 3.315 

Mode 2 35.07 35.08 

Mode 3 70.60 70.77 

Mode 4 122.6 122.7 

Mode 5 225.7 226.0 

Mode 6 269.0 269.4 
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Mode 7 395.7 396.6 

Mode 8 420.7 420.8 

Mode 9 552.2 552.3 

Mode 10 650.1 649.6 

 

First Four Mode Shapes: 

 
Mode Shape 1 

 
Mode Shape 2 

 
Mode Shape 3 

 
Mode Shape 4 

 

Comments 

The vibration frequencies given by Real3D are very close to the referenced values. 

 

Reference 

[1]. Cook, Malkus, Plesha, Witt, “Concept and Applications of Finite Element Analysis” 4th 

Edition, pp436, John Wiley & Sons, Inc., 2002 
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F-02 (2D Truss Vibration) 

 
Objective 

To verify the behavior of truss element vibration 

 

Problem Description 

The 2D truss structure [Ref 1] shown below vibrates under its own weight.  Nodal coordinates 

in meters are shown in parenthesis.  

Material properties: E = 7.17e10 N/m2, ν = 0.30, ρ = 2768 Kg/m3 

Section cross-sectional areas 

 Vertical trusses: 8.0e-5 m2 

 Horizontal trusses: 6.0e-5 m2 

 Diagonal trusses: 4.0e-5 m2 

 

 
 

Finite Element Model 

15 beam elements 

Model type: 2D Truss 

 

Results 

The mode frequencies are given by [Ref 1] 

Unit: mode frequency – Hz 
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Mode Frequency Real3D [Ref 1] 

Mode 1 7.9822 7.9832 

Mode 2 27.9952 28.0012 

Mode 3 44.8770 44.8815 

Mode 4 49.5731 49.5859 

Mode 5 94.9018 94.925 

Mode 6 116.3799 116.3882 

Mode 7 125.6432 125.6551 

Mode 8 126.1574 126.1727 

Mode 9 132.1162 132.1308 

Mode 10 152.2912 152.3021 

 

Comments 

The vibration frequencies given by Real3D are very close to the referenced values. 

 

Reference 

[1]. Stejskal, Dehombreux, Eiber, Gupta, Okrouhlik, “Mechanics with Matlab” April 2001 

Web: http://www.geniemeca.fpms.ac.be/mechmatHTML/  

http://www.geniemeca.fpms.ac.be/mechmatHTML/
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F-03 (Cantilevered Tapered Membrane Vibration) 

 
Objective 

To verify the behavior of membrane plate vibration 

 

Problem Description 

The cantilevered tapered membrane plate [Ref 1] shown below vibrates under its own weight.   

Material properties: E = 2.0e11 Pa, ν = 0.30, ρ = 8000 Kg/m3 

Plate thickness: t = 0.05 m 

 

 
 

Finite Element Model 

128 shell elements 

Model type: 2D Plane Stress 

 

Results 

The mode frequencies are given by [Ref 1].
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Unit: mode frequency – Hz 

Mode Frequency 

Real3D 

[Ref 1] 
Compatible Membrane 

Incompatible 

Membrane 

Mode 1 44.7076 44.4487 44.623 

Mode 2 130.3669 129.2843 130.03 

Mode 3 162.4766 162.4449 162.70 

Mode 4 246.2847 243.6222 246.05 

Mode 5 378.4229 373.7379 379.90 

Mode 6 389.4256 389.2006 391.44 

 

Comments 

The vibration frequencies given by Real3D are very close to the referenced values. 

 

Reference 

[1]. Abbassian, Dawswell, Knowles “Selected Benchmarks for Natural Frequency Analysis”, 

Test No. 32, NAFEMS Finite Element Methods & Standards, Nov. 1987 
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F-04 (Cantilever Plate Vibration) 

 
Objective 

To verify the behavior of plate bending vibration 

 

Problem Description 

The 24 x 24 in cantilever plate [Ref 1] shown below vibrates under its own weight.   

Material properties: E = 2.95e+007 psi, ν = 0.20, density = 0.28356 lb/in3 

Plate thickness: t =1 in 

 

 
 

Finite Element Model 

361 shell elements (19 x 19 mesh) 

Model type: 2D Plate Bending 

 

Results 

The mode frequencies are given by [Ref 1].
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Unit: mode frequency – Hz 

Mode Frequency 

Real3D 
[Ref 1] 

MITC4 Thick Plate Kirchhoff Thin Plate 

Mode 1 0.0176 0.0175 0.01790 

Mode 2 0.0070 0.0069 0.00732 

Mode 3 0.0028 0.0028 0.00292 

Mode 4 0.0023 0.0022 0.00228 

Mode 5 0.0019 0.0019 0.00201 

 

Comments 

The vibration frequencies given by Real3D are very close to the referenced values. 

 

Reference 

[1]. Harris, Crede “Shock and Vibration Handbook”, McGraw-Hill, Inc, 1976  
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F-05 (Cantilever Brick Vibration) 

 
Objective 

To verify the behavior of brick element vibration 

 

Problem Description 

A 1.0 m long cantilever beam fixed at the left end as shown below vibrates under its own weight.   

Material properties: E = 2.0e11 N/m2, ν = 0, density = 7800 kg/m3 

Beam section: b x h = 0.05 x 0.1 m 

 

 
 

Finite Element Model 

40 brick elements (20 x 2 x 1 mesh) 

Model type: 3D Brick 

Boundary conditions 

Fixed Dx, Dy and Dz for nodes at left end 

Fixed Dx for nodes along the middle line 

Fixed Dz for all nodes 

 

Results 

The theoretical mode frequencies may be calculated as follows [Ref 1]: 

𝑓𝑛 =
𝐾𝑛

2𝜋𝐿2
√

𝐸𝐼

𝑚
=

𝐾𝑛

2𝜋(1.0)2
√2.0𝑒11∗

1

12
∗0.05∗0.13

7800∗0.05∗0.1
= 23.26468652 ∗ 𝐾𝑛  

Where K1 = 3.51602; K2 = 22.0345; K3 = 61.6972 

Unit: mode frequency – Hz 

Mode Frequency 

Real3D 
Theoretical 

Compatible Brick Incompatible Brick 

Mode 1 86.0831 81.1984 81.80 

Mode 2 517.9047 489.7797 512.6 

Mode 3 1370.6341 1300.4777 1435.4 

 

Comments 

The first and second vibration frequencies given by Real3D are close to the theoretical ones.  

More elements need to be used to get accurate third and higher frequencies. 
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The boundary conditions are chosen such that out-of-plane and axial directions are suppressed so 

we can concentrate on the behavior of in-plane vibration. 

 

Reference 

[1]. Chopra, “Dynamics of Structures” 2nd Edition, pp 679, Prentice Hall, Inc., 2001  
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F-06 (2D Steel Frame Vibration) 

 
Objective 

To verify the behavior of the beam element in large 2D steel frame vibration 

 

Problem Description 

A 5-span, 12-story 2D steel frame vibrates under its own weight as shown below.  All beams 

are W24’s and all columns are W14’s 

Material properties: E = 29000 ksi, ν = 0.3, density = 483.84 lb/ft3  

 

 
 

Interior columns:   

Floor 1 – 4: W14x120 

Floor 5 – 8: W14x90 

Floor 9 – 12: W14x68 

 

Exterior columns:   

Floor 1 – 4: W14x90 

Floor 5 – 8: W14x68 
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Floor 9 – 12: W14x48 

 

Beams:   

Floor 1 – 4: W24x131 

Floor 5 – 8: W24x104 

Floor 9 – 12: W24x84 

 

Units: Iz, Iy and J – in4, A, Ay and Az – in2 

Section Iz Iy J A Ay Az 

W14X120 1380 495 9.37 35.3 8.555 23.03 

W14X90 999 362 4.06 26.5 6.16 17.1583 

W14X68 722 121 3.01 20 5.81 12 

W14X48 484 51.4 1.45 14.1 4.692 7.96308 

W24X131 4020 340 9.5 38.5 14.8225 20.64 

W24X104 3100 259 4.72 30.6 12.05 16 

W24X84 2370 94.4 3.7 24.7 11.327 11.5757 

 

Finite Element Model 

132 beam elements 

Model type: 2D Frame (shear deformation included) 

 

Results 

The first three natural frequencies are compared with another program, Frame Analysis & 

Design (STRAAD) [Ref. 1]. 

Units: Hz 

 Real3D 
Frame Analysis & Design 

(STRAAD) 

Mode 1 1.7508 1.7402386 

Mode 2 4.6904 4.6629050 

Mode 3 7.9692 7.9228372 

 

Comments 

The results given by Real3D are very close to the referenced values. 

 

Reference 

[1]. “Frame Analysis & Design”, Digital Canal Corporation, Dubuque, Iowa, USA 
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F-07 (3D Frame Vibration) 

 
Objective 

To verify the behavior of the beam element in large 3D frame vibration 

 

Problem Description 

A 3D single story frame structure with a length = 27.25 in, width = 17.25 in and height = 18.625 

in, is fixed at the bottom.  Nodes are inserted at 8.625 in from the top corner nodes along the 

length, width and height. 

Material: E = 2.79e+007 lb/in2, v = 0.3 

Sections: A = 1.07453 in2, Ay = Az = 0.537266 in2, Iz = Iy = 0.665747 in4, J = 1.33149 in4 

Masses: Corner nodes = 0.0253816 lb-sec2/in (X, Y and Z directions) 

 All other nodes except supports: 0.00894223 lb-sec2/in (X, Y and Z directions) 

 

Finite Element Model 

18 beam elements 

Model type: 2D Frame (shear deformation included) 

 

Results 

The first 10 natural frequencies are compared with another independent program Larsa [Ref. 1].  

Units: Hz 

 Real3D Larsa 
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Mode 1 111.2088 111.21 

Mode 2 115.7695 115.77 

Mode 3 137.1354 137.13 

Mode 4 215.7477 215.74 

Mode 5 404.1712 404.16 

Mode 6 422.5145 422.50 

Mode 7 451.4604 451.45 

Mode 8 548.8147 548.80 

Mode 9 733.3148 733.29 

Mode 10 758.2787 758.26 

 

Comments 

The results given by Real3D are very close to the referenced values. 
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F-08 (Response Spectrum Analysis of 4 Story Shear Building) 

 
Objective 

To verify the results of response spectrum analysis of a shear building using beam elements. 

 

Problem Description 

A 4-story shear building [Ref 1] with corresponding mass and stiffness info shown below. 

 
 

The response spectrum is defined below (from Loads | Response Spectra Library menu). 

Period (sec) Spectral Acceleration (g) 

0.0 0.15 

0.1 0.18 

0.2 0.25 

0.3 0.38 

0.4 0.50 

0.5 0.50 

0.6 0.40 

0.8 0.32 

1.0 0.25 

1.2 0.19 

 

We will use four 1m steel beam elements, with sectional area of A1 = 4 mm2, A2 = 8 mm2, A3 = 

12 mm2 and A4 = 16 mm2.  E = 199.948 KN/mm2, v = 0.3.  The axial stiffness EA/L will 

match the shear building column stiffness.  We will use very large values for other section 
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properties such as Iz, Iy, J, Ay, Az.  This effectively allows us to focus beam element behavior 

in axial direction only. 

We will apply vertical loads F1 = 14.7 KN, F2 = 29.4 KN, F3 = 29.4 KN and F4 = 44.1 at the 

four free nodes.  These forces will be converted to equivalent masses by the program during 

frequency/response spectrum analysis. 

 

Results 

The following lists different results by Real3D against the reference [Ref. 1].  

 

Vibration Periods (sec) 

 Real3D Reference 

Mode 1 0.5788 0.5789 

Mode 2 0.2594 0.2595 

Mode 3 0.1873 0.1873 

 

Modal Displacements (cm) 

Node Real3D Reference 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

1 5.1930E+00 -3.9987E-01 5.8228E-02 5.19545e+00 -4.00257e-01 5.82355e-02 

2 4.0459E+00 3.9837E-02 -6.4594E-02 4.04779e+00 3.98752e-02 -6.46441e-02 

3 2.5786E+00 2.1588E-01 1.0244E-02 2.57982e+00 2.16095e-01 1.03938e-02 

4 1.2207E+00 1.7499E-01 4.5731E-02 1.22125e+00 1.75157e-01 4.56209e-02 

 

Inertia Forces (N) 

Node Real3D Reference 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

1 
9.1746E+03 -3.5167E+03 9.8232E+02 

9.18127e+03 

 

-3.52106e+03 

 

9.83037e+02 

 

2 
1.4296E+04 7.0070E+02 -2.1794E+03 

1.43063e+04 

 

7.01546e+02 

 

-2.18364e+03 

 

3 
9.1113E+03 3.7973E+03 3.4565E+02 

9.11798e+03 

 

3.80201e+03 

 

3.55155e+02 

 

4 
6.4698E+03 4.6169E+03 2.3145E+03 

6.47450e+03 

 

4.62254e+03 

 

2.30532e+03 

 

 

Base Shear Forces (N) 
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 Real3D Reference 

Maximum 

Likely (SRSS) 
3.9478e+004 3.951e+04 

Maximum 

Possible 

(ABSSUM) 

4.6113e+004 4.614e+4 

 

Comments 

The results given by Real3D are very close to the referenced values.  We did not enter nodal 

masses directly.  Therefore, we need to make sure nodal forces are converted to masses before 

frequency analysis (Analysis | Frequency Analysis). 

 

Reference 

[1]. “Earthquake Response Spectrum Analysis of 4 Story Shear Building”, 1996, Mark Austin, 

Department of Civil Engineering, University of Maryland 
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F-09 (Response Spectrum Analysis of 2D Frame) 

 
Objective 

To verify the results of response spectrum analysis on a 2D frame. 

 

Problem Description 

A 2-story concrete frame shown below [Ref 1] fixed at the bottom is subjected to ground motion 

characterized by the design spectrum specified.  

Geometry: bay distance = 20 ft, each story height = 10 ft. 

Material: E = 3000 ksi. 

Section-1: Iz = 1000 in4; Section-2: Iz = 2000 in4. Other section properties are set to very large 

values to simulate bending only actions.   

Masses: first floor center = 12.4368 kip-sec2/ft in X direction, second floor center = 6.2184 kip-

sec2/ft in X direction. 

 

The design response spectrum is defined below (from Loads | Response Spectra Library menu). 

Period (sec) Spectral Acceleration (g) 

0.000 0.500 

0.030 0.500 

0.125 1.355 

0.587 1.355 

0.660 1.355 

1.562 0.576 

4.120 0.218 

10.000 0.037 
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Results 

The following lists different results by Real3D against the reference [Ref. 1].  

 

Time Periods (sec) 

 Real3D Reference 

Mode 1 1.5621 1.562 

Mode 2 0.5868 0.5868 

 

Modal Displacements SRSS combination (in) 

 Real3D Reference 

First story 7.576e+000 7.566 

Second story 1.884e+001 18.81 

 

Bending Moment (kip-ft) 

Element Location 
Real3D Reference 

Mode 1 Mode 2 Mode 1 Mode 2 

First Floor 

Beam 
Left End -815.6 -56.54 -814 -57 

Second Floor 

Beam 
Left End -396.9 178.5 -396 179 

Bottom 

Column 

Top End 425.9 372.9 425 374 

Bottom End 969.6 410.6 968 412 

Top Column 
Top End 396.9 -178.5 396 -179 

Bottom End 389.7 -316.4 389 -317 

 

Comments 

The results given by Real3D are very close to the referenced values. The bending moments are 

from load combinations INERTIA_LOADCOMB_X_MODE_1 and 

INERTIA_LOADCOMB_X_MODE_2 which are generated automatically during the response 

spectrum analysis process. 

 

Reference 

[1]. pp 562, “Dynamics of Structures – Theory and Applications To Earthquake Engineering”, 

2001, Second Edition, by Anil K. Chopra, Prentice Hall. 
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F-10 (Response Spectrum Analysis of 3D Frame) 

 
Objective 

To verify the results of response spectrum analysis on a 3D frame. 

 

Problem Description 

A 2-story 3D frame shown below [Ref 1] fixed at the bottom is subjected to ground motion 

characterized by constant 0.4g for all modes, with 5% damping. 

Geometry: X direction = 2 x 35 ft; Y direction = 2 x 13 ft; Z direction = 2 x 25 ft. 

Columns: E = 350,000 k/ft2.  A = 4 ft2, Iz = 1.25 ft4, Iy = 1.25 ft4, J = 1.25 ft4, Ay =Az = 0 ft2 

Beams: E = 500,000 k/ft2.  A = 5 ft2, Iz = 2.61 ft4, Iy = 1.67 ft4, J = 1.25 ft4, Ay =Az = 0 ft2 

Two additional nodes 28 (38, 13, 27) and 29 (38, 26, 27) are placed on the first and second floors 

as they are the center of masses for the respective floors. 

Masses: 6.2112 k-sec2/ft at nodes 28 and 29 (X and Z directions). 

To prevent nodes 28 and 29 from being orphaned nodes, we will add two additional beams with 

very small section properties (Iz = Iy = J = 1e-5 ft4, A = 1e-5 ft2) to connect node 28 with node 

14 (or any other node on the first floor) and nodes 29 with node 17 (or any other node on the 

second floor). 

 

 

Results 
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The following lists different results by Real3D against the reference [Ref. 1].  

 

 Real3D Reference 

Mode 1 period (sec) 0.2269 0.2271 

Mode 2 period (sec) 0.2152 0.2156 

Mode 3 period (sec) 0.0733 0.0733 

Mode 4 period (sec) 0.0719 0.0720 

X displacement at node 29 

ABSSUM modal combination (ft) 
0.02045 0.02050 

X displacement at node 29 SRSS 

modal combination (ft) 
0.02010 0.02012 

X displacement at node 29 CQC 

modal combination (ft) 
0.02011 0.02014 

 

Comments 

The results given by Real3D are very close to the referenced values. This verification problem 

also confirms the robustness of rigid diaphragm implementation.  Due to program limitation, 

we have to add couple of weak beams on the floors to prevent center-of-mass nodes (node 28 

and 29) from being orphaned.    

 

Reference 

[1]. Example 1-024, Sap2000 Software Verification Manual, 2007, Computers and Structures, 

Inc., Berkeley, California. 
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F-11 (2D Frame Vibration with P-Delta Effects) 

 
Objective 

To verify the results of frequency analysis on a 2D frame under the following conditions. 1) self-

weight only; 2). self-weight + super-imposed loads with and without P-Delta effects.  

 

Problem Description 

The following concrete frame is subjected to self-weight and super-imposed nodal loads. 

Geometry: X direction = 20 ft; Y direction = 24 ft  

Material: E = 3644 ksi, Poisson ratio = 0.15, Density = 145 lb/ft^3 

Columns: rectangular 20 x 20 inches 

Beam: rectangular 20 x 30 inches 

Self-weight loads: 0.6 kip/ft on columns, 0.4 kip/ft on beam 

Super-imposed loads: Fx = 25 kips, Fy = -1500 kips at the top-left node, Fy = -1200 kips at the 

top-right node. 

Do not consider shear deformation in members. 
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Results 

The following lists the results by Real3D against another FEM program AxisVM.  

 

Vibration frequencies (Hz) under self-weight only: 

Mode Real3D AxisVM Difference (%) 

1 4.7512 4.7521 -0.01894 

2 25.0436 25.0483 -0.01877 

3 33.0204 33.0265 -0.01847 

4 39.8718 39.879 -0.01806 

5 83.1576 83.1721 -0.01744 

6 83.7393 83.7536 -0.01708 

7 87.9772 87.9898 -0.01432 

8 107.1918 107.2054 -0.01269 

9 146.3396 146.3641 -0.01674 

 

Vibration frequencies (Hz) under self-weight + super-imposed loads without P-Delta effects: 

Mode Real3D AxisVM Difference (%) 

1 0.3951 0.3951 0 

2 5.7411 5.7418 -0.01219 

3 6.4154 6.4162 -0.01247 

4 11.5421 11.5440 -0.01646 

5 25.3369 25.3411 -0.01658 

6 30.0486 30.0535 -0.01631 

7 42.5830 42.5901 -0.01667 

8 81.9055 81.9188 -0.01624 

9 87.0169 87.0309 -0.01609 

 

Vibration frequencies (Hz) under self-weight + super-imposed loads with P-Delta effects: 

Mode Real3D AxisVM Difference (%) 

1 0.3413 0.3413 0 

2 5.7373 5.7380 -0.0122 

3 6.4117 6.4125 -0.01248 

4 11.5402 11.5422 -0.01733 

5 24.5082 24.5122 -0.01632 

6 29.1036 29.1084 -0.01649 
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7 42.1941 42.2013 -0.01706 

8 80.6857 80.6986 -0.01599 

9 85.8358 85.8498 -0.01631 

 

Comments 

The results provided by Real3D are very close to those given by AxisVM.    

 

Generally, compression forces in members decrease their stiffness when the P-Delta effect is 

taken into account. This, in turn, results in smaller vibration frequencies (or longer vibration 

periods). In this example, the first mode frequency is about 13.6% smaller when the P-Delta 

effect is considered.  

 

It is important to subdivide the members in order to capture the vibration modes along the 

member lengths.   



 111  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concrete Design 



 112  

G-01 (Flexural Design of Concrete Beams) 

 
Objective 

To verify the design of the rectangular and Tee concrete beams 

 

Problem Description 

The following concrete beams are to be designed according to ACI 318-19 and 318-14 code.  

The flange width and thickness are given in parenthesis for Tee beams. 

 

Beam B x H [Bf x Tf]  (in) fc (ksi) fy (ksi) dt (in) d’ (in) 
Mu (ft-

kips) 

1 10 x 16 4 60 13.5 2.5 123.2 

2 14 x 23 4 60 20.5 2.5 516 

3 10 x 21.5 [30 x 2.5] 4 60 19.0 2.5 227 

4 10 x 21.5 [30 x 2.5] 4 60 19.0 2.5 400 

5 10 x 22.5 3 40 20.0 2.5 129 

6 11 x 25 3 60 22.5 2.5 403 

7 10 x 20 4 60 16.0 2.5 211 

 

 

Finite Element Model 

7 beam elements with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

The design results of these beams are compared with the references according to ACI 318-19 

 

Beam 
Real3D References 

As As’ As As’ Reference Page 

1 2.41 0 2.40 0 Ref [1] pp. 7-23 

2 6.58 1.48 6.58 1.43 Ref [1] pp. 6-30 

3 2.77 0 2.77 0 Ref [1] pp. 7-33 

4 5.10 0 5.10 0 Ref [1] pp. 7-35 

5 2.37 0 2.37 0 Ref [2] pp. 133 

6 4.65 1.33 4.74 1.20 Ref [2] pp. 191 

7 3.48 0.73 3.48 0.70 Ref [3] pp. 102 
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The design results of these beams are compared with the references according to ACI 318-14 

 

Beam 
Real3D References 

As As’ As As’ Reference Page 

1 2.41 0 2.40 0 Ref [1] pp. 7-23 

2 6.59 1.44 6.58 1.43 Ref [1] pp. 6-30 

3 2.77 0 2.77 0 Ref [1] pp. 7-33 

4 5.10 0 5.10 0 Ref [1] pp. 7-35 

5 2.37 0 2.37 0 Ref [2] pp. 133 

6 4.66 1.31 4.74 1.20 Ref [2] pp. 191 

7 3.48 0.70 3.48 0.70 Ref [3] pp. 102 

 

Comments 

The results given by Real3D are very close to the referenced values.  The differences between 

ACI 318-19 and ACI 319-14 results in doubly reinforced beams are due to the minor differences 

in tension-controlled strains (fy / E + 0.003 vs. 0.005).  

The model consists of multiple simply supported beams.  Nodal moments of opposite signs are 

applied to nodes to achieve uniform moments in each member. The program is very versatile to 

design multiple isolated beams as well as to design members in integrated frames. 

 

Reference 

[1]. “Notes on ACI 318-02 Building Code Requirements for Structural Concrete”, 8th Edition, 

Portland Cement Association, 2002 

[2]. James G. MacGregor & James K. Wight, “Reinforced Concrete – Mechanics and Design”, 

4th Edition, Pearson Prentice Hall, 2005 

[3]. Arthur H. Nilson, David Darwin, Charles W. Dolan, “Design of Concrete Structures”, 13th 

Edition, McGraw-Hill Higher Education, 2004 
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G-02 (Shear Design of Concrete Column) 

 
Objective 

To verify the shear design the rectangular concrete column 

 

Problem Description 

The following concrete column is to be designed according to ACI 318-19 code [Ref 1].  The 

concrete cover to stirrup is 1.5 inches. 

Beam Dimension (in) fc (ksi) 
fys 

(ksi) 

Longitudinal 

Bar Size 

Stirrup 

Size 
Pu (kips) 

Vu 

(kips) 

1 
Rectangular 

20 x 20 
4 60 #9 #3 

224.5 

(compression) 
7.2 

 

 

Finite Element Model 

1 beam element with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

The design result is compared with the [Ref 1].  The following table shows𝜑𝑉𝑐and required 

stirrup spacing for the column.  The program does not round the required stirrup spacing to the 

practical dimension. 

 

Beam 
Real3D Reference  

𝜑𝑉𝑐 (kips) s (in) 𝜑𝑉𝑐 (kips) s (in) 

1 44.915 18.0 44.9 18.0 

 

Comments 

The results given by Real3D are very close to the reference values.  The model consists of a 

simply supported beam.  A point load of 47 kips is applied at the middle of the beam to achieve 

required Vu in the member. 

 

Reference 

 

[1]. Example 7.21, “Design Guide on the ACI 318 Building Code Requirements for Structural 

Concrete”, first edition, CRSI, 2020 
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G-02a (Shear Design of Concrete Beams) 

 
Objective 

To verify the shear design the rectangular and circular concrete beams (columns) 

 

Problem Description 

The following concrete beams (columns) are to be designed according to ACI 318-14 code.  

The concrete cover to stirrup is 1.5 inches. 

Beam Dimension (in) fc (ksi) 
fys 

(ksi) 

Longitudinal 

Bar Size 

Stirrup 

Size 
Pu (kips) 

Vu 

(kips) 

1 
Rectangular 

12 x 16 
4 40 #6 #3 

160 

(compression) 
20 

2 
Circular 

Diameter 14 
4 40 #6 #3 

10 

(compression) 
30 

 

 

Finite Element Model 

2 beam elements with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

The design result of the first beam element is compared with the [Ref 1].  The second beam 

element is a round column subjected to compression and is designed as follows: 

𝑉𝑐 = 2 (1 +
𝑃𝑢

2000𝐴𝑔
) √𝑓𝑐𝑏𝑤𝑑 = 2 (1 +

10000

2000∗𝜋∗72) √4000(14)(0.8)(14) = 20,478 lbs 

𝜑𝑉𝑐 = 0.75 ∗ 20.478 = 15.358 kips 

𝑠 =
𝜑𝐴𝑣𝑓𝑦𝑠𝑑

(𝑉𝑢−𝜑𝑉𝑐)
=

0.75∗(0.22)(40000)(0.8∗14)

(30−15.358)∗1000
= 5.05 in. 

Note: For circular section, bw = 2R, d = 0.8(2R) are used to compute Vc and Vs, according to 

ACI 318-02 11.3.3 and 11.5.7.3 

The following table shows 𝜑𝑉𝑐 and required stirrup spacing for the two beam elements.  The 

program does not round the required stirrup spacing to the practical dimension. 

 

Beam 
Real3D Reference / Theoretical 

𝜑𝑉𝑐 (kips) s (in) 𝜑𝑉𝑐 (kips) s (in) 

1 22.175 6.88 22.2 6.9 

2 15.359 5.05 15.358 5.05 
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Comments 

The results given by Real3D are very close to the reference and theoretical values.  The model 

consists of multiple simply supported beams.  Nodal moments of same signs are applied to 

nodes to achieve uniform shears in each member. 

 

Reference 

[1]. “Notes on ACI 318-02 Building Code Requirements for Structural Concrete”, 8th Edition, 

pp. 12-19, Portland Cement Association, 2002 
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G-02b (Shear Design of Sand-Lightweight Concrete Column) 

 
Objective 

To verify the shear design the rectangular sand-lightweight column under tension  

 

Problem Description 

The following concrete column is to be designed according to ACI 318-14 code.  The clear 

concrete cover to #3 stirrup is 1.25 inches. The concrete density is 125 lb/ft3. 

Dimension (in) fc (ksi) 
fys 

(ksi) 

Longitudinal 

Bar Size 

Stirrup 

Size 
Pu (kips) 

Vu 

(kips) 

Rectangular 

10.5 x 18 
3.6 40 #6 #3 

-26.7 

(compression) 
29.8 

 

 

Finite Element Model 

1 beam element with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

The shear design result of the column is compared with the [Ref 1].   

𝜑𝑉𝑐 = (0.75)2 (1 +
𝑃𝑢

500𝐴𝑔
) 𝜆√𝑓𝑐𝑏𝑤𝑑 = (0.75)2 (1 +

−26700

500∗18∗10.5
) (0.85)√3600(10.5)(16) =

9221 lbs 

𝑠 =
𝜑𝐴𝑣𝑓𝑦𝑠𝑑

(𝑉𝑢−𝜑𝑉𝑐)
=

0.75∗(0.22)(40000)(16)

(29.8−9.221)∗1000
= 5.13 in. 

The following table shows 𝜑𝑉𝑐 and required stirrup spacing for the column.  The program does 

not round the required stirrup spacing to the practical dimension. 

 

Real3D Reference / Theoretical 

𝜑𝑉𝑐 (kips) s (in) 𝜑𝑉𝑐 (kips) s (in) 

9.221 5.13 9.2 5.1 

 

Comments 

The results given by Real3D are very close to the reference values.  The model consists of a 

simply supported beam.  Nodal moments of same signs are applied to nodes to achieve uniform 

shears in the member. 

 

Reference 

 

[1]. “PCA Notes on ACI 318-08 Building Code Requirements for Structural Concrete”, pp. 12-

16, Portland Cement Association, 2008 

  



 118  

G-02c (Shear Design of a Collector Beam) 

 
Objective 

To verify the shear design the rectangular concrete collector beam 

 

Problem Description 

The following concrete collector beam is to be designed according to ACI 318-19 code [Ref 1].  

The concrete cover to stirrup is 1.625 inches. Use 3 stirrup legs. 

Beam Dimension (in) fc (ksi) 
fys 

(ksi) 

Longitudinal 

Bar Size 

Stirrup 

Size 
Pu (kips) 

Vu 

(kips) 

1 
Rectangular 

36 x 28.5 
4 60 #8 #3 

59.3 

(tension) 
23.5 

 

 

Finite Element Model 

1 beam element with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

The design result is compared with the [Ref 1].  The following table shows𝜑𝑉𝑐and required 

stirrup spacing for the column.  The program does not round the required stirrup spacing to the 

practical dimension. 

 

Beam 
Real3D Reference  

𝜑𝑉𝑐 (kips) s (in) 𝜑𝑉𝑐 (kips) s (in) 

1 82.034 11 82.1 11 

 

Comments 

The results given by Real3D are very close to the reference values.  The model consists of a 

simply supported beam.  A point load of 47 kips is applied at the middle of the beam to achieve 

required Vu in the member. 

 

Reference 

 

[1]. Example 14.13, “Design Guide on the ACI 318 Building Code Requirements for Structural 

Concrete”, first edition, CRSI, 2020 
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G-02d (Shear Design of a Column) 

 
Objective 

To verify the shear design the rectangular concrete collector beam 

 

Problem Description 

The following concrete collector beam is to be designed according to ACI 318-19 code [Ref 1].  

The concrete cover to stirrup is 4.075 inches. Use 4 stirrup legs. 

Beam Dimension (in) fc (ksi) 
fys 

(ksi) 

Longitudinal 

Bar Size 

Stirrup 

Size 
Pu (kips) 

Vu 

(kips) 

1 
Rectangular 

28x28 
4 60 #8 #5 

715.5 

(compression) 
215.8 

 

 

Finite Element Model 

1 beam element with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

The design result is compared with the [Ref 1].  The following table shows𝜑𝑉𝑐and required 

stirrup spacing for the column.  The program does not round the required stirrup spacing to the 

practical dimension. 

 

Beam 
Real3D Reference  

𝜑𝑉𝑐 (kips) s (in) 𝜑𝑉𝑐 (kips) s (in) 

1 133.392 15.44* 132.3 15.3 

 

Comments 

The results given by Real3D are very close to the reference values.  The model consists of a 

simply supported beam.  A point load of 431.6 kips is applied at the middle of the beam to 

achieve required Vu in the member.  The stirrup spacing given here is calculated based on the 

#5 hoops to resist the (Vu - 𝜑𝑉𝑐).  The value given by Real3D is not available to user because 

the minimum spacing requirement governs. 

 

Reference 

 

[1]. Example 14.13, “Design Guide on the ACI 318 Building Code Requirements for Structural 

Concrete”, first edition, CRSI, 2020  
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G-03 (Axial-Flexural Design of Concrete Columns) 

 
Objective 

To verify the axial-flexural design of the rectangular and circular concrete columns 

 

Problem Description 

The following concrete columns [Ref 1, 2] are to be designed according to ACI 318-02 code.   

 

Beam Dimension (in) fc (ksi) fys (ksi) Pu (kips) 
Mux (ft-

kips) 

Muy (ft-

kips) 

1  

[Ref.1] 

Rectangular 

16 x 16 
3 60 

249 

(compression) 
55 110 

2 

[Ref. 2] 

Circular 

26 
4 60 

1600 

(compression) 
150 0 

3 

[Ref. 3] 

Rectangular 

20 x 12 
4 60 

255 

(compression) 
63.75 127 

 

 

Finite Element Model 

3 beam elements with appropriate material and design criteria assigned 

Model type: 3D Frame 

 

Results 

The design results are compared with the [Ref 1] and [Ref 2] in the following table.   

 

Beam 
Real3D Reference 

Bars Unity Check Bars 

1 
12#7  

(4 on each side) 
0.976 

12#7 (4 on each side) or 

8#8 (3 on each side) 

2 13#10 0.982 12#10 

3 
8#9  

(3 on each side) 
0.915 

8#9 

(3 on each side) 

 

Comments 

The first column is biaxially loaded and therefore a 3D frame model is used.  [Ref 1] gives 

12#7 (4 on each side) bars or 8#8 (3 on each side) bars based on Equivalent Eccentricity Method 

and Bresler Reciprocal Load Method respectively.  The program gives 12#7 bars (4#7 on each 

side) if trial bar size starts with #7 and bar layout uses ‘equal sides’ option.  If 8#8 bars (3#8 on 

each side) are used, the program gives a unity check value of 1.024 (and therefore the design 

fails).  Since the program always tries to find the first section that will pass the unity check (< 

1.0), we need to limit the maximum reinforcement ratio (say 3% in this case) in order to see the 

unity check of the 8#8 bars (3#8 on each side) section.  In addition, we also need to set the start 
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and end bar sizes to be #8 and bar layout to be ‘equal sides’ in the column design criteria for 

comparison. 

The second column is a circular spiral column.  The program gives 13#10 bars while [Ref 2] 

gives 12#10.  If 12#10 bars are used, the program gives a unity check value of 1.008 (and 

therefore the design fails).  Practically speaking, 12#10 should be regarded as ok. 

Each column is modeled with one 3D beam element with one support flag of 111100 (fixed in 

Dx, Dy, Dz and Dox) and the other support flag of 011100 (fixed in Dy, Dz and Dox).  Nodal 

moments and forces are applied in respective directions.  Since no slenderness is considered, 

very small effective length factors are used. 

 

Reference 

[1]. James G. MacGregor & James K. Wight, “Reinforced Concrete – Mechanics and Design”, 

4th Edition, pp.529-532, Pearson Prentice Hall, 2005 

[2]. James G. MacGregor & James K. Wight, “Reinforced Concrete – Mechanics and Design”, 

4th Edition, pp.519, Pearson Prentice Hall, 2005 

[3]. Arthur H. Nilson, David Darwin, Charles W. Dolan, “Design of Concrete Structures”, 13th 

Edition, pp. 278, McGraw-Hill Higher Education, 2004 
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G-04 (Axial-Flexural Design of Concrete Slender Columns) 

 
Objective 

To verify the axial-flexural design of the rectangular concrete column (braced) 

 

Problem Description 

 

The following concrete braced column [Ref 1] is to be designed according to ACI 318-02 code.  

The clear concrete cover to stirrup is 1.5 inches.  Use fc = 4 ksi, fy = 60 ksi 

 

Size (in) 18 x 18 

Total length (ft) 13 

Unbraced length (ft) 13 

Effective length factor 0.87 

Dead Pu (kips) 230 (compression) 

Dead Mu-top (ft-kips) 2 

Dead Mu-bottom (ft-kips) -2 

Live Pu (kips) 173 (compression) 

Live Mu-top (ft-kips) 108 

Live Mu-bottom (ft-kips) 100 

 

Finite Element Model 

1 beam elements with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

 

The following table shows some intermediate and final results during the design.  The program 

gives comparable results with the reference [Ref 1]. 

 

 Real3D [Ref 1] 

Cm 0.960 0.96 

βd. 0.499 0.50 

Moment magnification factor 1.145 1.15 

Pu (kips) 552.8 553 

Mu (ft-kips) 200.6 201 

Bars 8 # 9 4 # 10 + 4 # 9 
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Comments 

Since this is a braced column, we do not need to perform the 2nd order analysis for the design. 

 

Reference 

[1]. Arthur H. Nilson, David Darwin, Charles W. Dolan, “Design of Concrete Structures”, 13th 

Edition, pp. 304, McGraw-Hill Higher Education, 2004  
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G-05 (Flexural Design of Cantilever Concrete Slab) 

 
Objective 

To verify the flexural design of the concrete slab 

 

Problem Description 

 

The 6 ft cantilever concrete slab shown below has a length of 30 ft and a thickness of 7.5 in.  It 

is subjected to a uniform load of 350 lb/ft^2.  Design the flexural reinforcement for the slab 

according to ACI 318-02 code.  The concrete cover (c.c.) is 1.0 inch.  Use fc = 4 ksi, fy = 60 

ksi 

E = 3644 ksi, v = 0.15 

 

 
 

Finite Element Model 

12 x 60 shell elements, each of which has a size of 0.5 x 0.5 ft.  

Model type: 2D Plate Bending, Use Kirchhoff thin plate bending 

 

Results 

The maximum design moment (Wood-Armer moment) in top-X direction Top-Mux  = -6.381 

kip-ft/ft.  The program gives the corresponding top-X direction steel Top-Asx = 0.2238 in2/ft, 

which is consistent with the following hand calculation. 

𝑅𝑛 =
𝑀𝑢

𝜑(𝑏𝑑2)
=

6.381 ∗ 12 ∗ 1000

0.9 ∗ (12 ∗ 6. 52)
= 167.8𝑝𝑠𝑖 

𝜌 =
0.85𝑓𝑐

′

𝑓𝑦
(1 − √1 −

2𝑅𝑛

0.85𝑓𝑐
′
) =

0.85 ∗ 4000

60000
(1 − √1 −

2 ∗ 167.8

0.85 ∗ 4000
) = 0.00287 

𝐴𝑠 = 𝜌(𝑏𝑑) = 0.00287 ∗ 12 ∗ 6.5 = 0.22386 in2/ft
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The contour (rotated) of the top steel required in X-direction is shown below. 

 

 

Comments 

No minimum top or bottom reinforcement is considered in this example.  The Kirchhoff thin 

plate (instead of the MITC4 thick plate) formulation is used for analysis.  This is generally 

recommended for models that contain only rectangular elements of thin or moderately thick 

plates (shells). 

 

Reference 

None 
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H-01 (W Steel Beam) 

 
Objective 

To verify the steel W-shaped beam design in flexure 

 

Problem Description 

 

Select the lightest W section for the simply supported beam of L = 50ft, Lb = 25 ft.  The 

superimposed load is 0.4 kip/ft dead load and 1.0 kip/ft live load.  Use A992 steel. 

[Ref 1, pp 435-437]. Use AISC 360-22 (16th edition) LRFD.  

 

Finite Element Model 

1 beam elements with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

 

The following table shows some intermediate and final results during the design.  The program 

gives comparable results with the reference [Ref 1]. 

 

 Real3D [Ref 1] 

Designed Section W18x97 W18x97 

Cb 1.30073 1.30 

Lp (ft) 9.3603  9.36 

Lr (ft) 30.359 30.3 

Mu (ft-kips) 686.295 688 

Phi-Mnx (ft-kips) 740.75 740 

 

Reference 

 

[1]. Charles Salmon, John Johnson and Faris Malhas, “Steel Structures” 5th Edition, Pearson 

Prentice Hall, 2009 
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H-02 (W Steel Column) 

 
Objective 

To verify the steel W-shape column design in combined axial and flexures 

 

Problem Description [Ref .1, Example H.4]   

 

Select an ASTM A992 W-shape with a 10-in nominal depth to carry the following load effects: 

Pu = 30 kips, Mux = 90 kip-ft, Muy = 12 kip-ft.   

The unbraced length is 14 ft and the ends are pinned.  Cb = 1.14.  The member is non-sway. 

Use AISC 360-22 (16th edition) LRFD. 

 

Finite Element Model 

1 beam elements with appropriate material and design criteria assigned 

Model type: 3D Frame 

 

Results 

 

The following table shows some intermediate and final results during the design.  The program 

gives comparable results with the reference [Ref 1]. 

 

 Real3D [Ref 1] 

Designed Section W10x33 W10x33 

B1x  1.0176 1.02 

B1y 1.0879 1.09 

Lp (ft) 6.8525 6.85 

Lr (ft) 21.776 21.8 

Phi-Pn (kips) 252.52 253 

Phi-Mnx (ft-kips)  136.59  137 

Phi-Mny (ft-kips)  52.5 52.5 

Critical Ratio 0.97858 0.979 

 

Reference 

 

[1]. AISC “Design Examples”, Version 16.0 
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H-03 (C Steel Beam) 

 
Objective 

To verify the steel channel beam capacity check in flexural and deflection  

 

Problem Description [Ref .1, Example F.2-1A]   

 

Check the capacity of the channel section C15x33.9 for the following beam 

Simply supported L = 25 ft. 

Limit the live load deflection to L/360. 

Fy = 50 ksi. 

 

The nominal loads are a uniform dead load of 0.23 kip/ft and a uniform live load of 0.69 kip/ft. 

The beam is continuously braced.   

 

Use AISC 360-22 (16th edition) LRFD. 

 

Finite Element Model 

1 beam elements with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

 

The following table shows some intermediate and final results during the design.  The program 

gives comparable results with the reference [Ref 1]. 

 

 Real3D [Ref 1] 

Mu (kips-ft) 107.813 108 

Phi-Mnx (ft-kips) 190.5 137 

Max live load deflection (in) 0.663206 0.664 

Live load deflection limit (in) 0.833333 0.833 

 

Reference 

 

[1]. AISC “Design Examples”, Version 16.0 
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H-04 (HSS Steel Column) 

 
Objective 

To verify the steel HSS column capacity check in axial direction  

 

Problem Description [Ref .1, Example E.10]   

 
Check the capacity of HSS12x8x3/16 column in axial compression.  

Fy = 50 ksi, L = 30 ft, Kx = Ky = 0.8, Kz = 1.0, Lu = 30 ft, Cb = 1.0. 

Use AISC 360-22 (16th edition) LRFD. 

 

Finite Element Model 

1 beam elements with appropriate material and design criteria assigned 

Model type: 3D Frame 

 

Results 

 

The following table shows some intermediate and final results during the design.  The program 

gives comparable results with the reference [Ref 1]. 

 

 Real3D [Ref 1] 

Phi-Pn (kips) 151.33 151 

 

Reference 

 

[1]. AISC “Design Examples”, Version 16.0 



 131  

H-05 (Round HSS Steel Column) 

 
Objective 

To verify the steel round HSS column capacity check in shear  

 

Problem Description [Ref .1, Example G.5]   

 
Check the capacity of HSS16.000X0.375 column in shear.  

Fy = 50 ksi, L = 32 ft 

Use AISC 360-22 (16th edition) LRFD. 

 

Finite Element Model 

1 beam elements with appropriate material and design criteria assigned 

Model type: 3D Frame 

 

Results 

 

The following table shows some intermediate and final results during the design.  The program 

gives comparable results with the reference [Ref 1]. 

 

 Real3D [Ref 1] 

Phi-Vnx (kips) 232.2 232 

 

Reference 

 

[1]. AISC “Design Examples”, Version 16.0 
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H-06 (Double Angle Steel Column) 

 
Objective 

To verify the steel double angle column axial capacity 

 

Problem Description [Ref .1, Example E.6]   

 
Check the capacity of 2L5x3x1/4x3/4LLBB column in axial compression.  

Fy = 50 ksi, L = 8 ft, Kx = Ky = Kz = 1.0, Lux = Luy = Luz = 8 ft.  

Connector distance = 32 in = 2.66667 ft. 

Use AISC 360-22 (16th edition) LRFD. 

 

Finite Element Model 

1 beam elements with appropriate material and design criteria assigned 

Model type: 3D Frame 

 

Results 

 

The following table shows some intermediate and final results during the design.  The program 

gives comparable results with the reference [Ref 1]. 

 

 Real3D [Ref 1] 

Phi-Pn (kips) 73.787 73.8 

 

Reference 

 

[1]. AISC “Design Examples”, Version 16.0 
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H-07 (WT Steel Beam) 

 
Objective 

To verify the steel WT beam flexural capacity 

 

Problem Description [Ref .1, Example F.10]   

 

Check the capacity of WT6x5 in flexure for the simply supported beam of L = 6 ft.  The load is 

0.08 kip/ft dead load and 0.24 kip/ft live load.  Use A992 steel.  The beam is continuously 

braced. 

Use AISC 360-22 (16th edition) LRFD. 
 

 

Finite Element Model 

1 beam elements with appropriate material and design criteria assigned 

Model type: 2D Frame 

 

Results 

 

The following table shows some intermediate and final results during the design.  The program 

gives identical results with the reference [Ref 1]. In the next few pages, we will include the step-

by-step calculation procedures output by the program. 

 

 Real3D [Ref 1] 

Mu (kip-ft) 2.16 2.16 

Phi-Mnx (kip-ft) 7.32 7.32 

 

Reference 

 

[1]. AISC “Design Examples”, Version 16.0 
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Step-By-Step Examples 
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This part of the documentation contains example problems solved by Real3D.  They are used to 

demonstrate the capabilities and reliabilities of the program.  They may also serve as simple 

tutorials for the program. 

 

Each example contains: 

➢ A brief description of the problem. 

➢ Suggested steps to create the model in the program. 

➢ Comparison of program results with theoretical or published results. 

➢ Comments. 

 

Many of the example problems are simple and may even be verified by hand calculations.  This 

is deliberate because simple models are easy to construct and hand calculation is the most 

reliable verification method.  The data files for all of the example problems are provided in the 

“Verifications” subdirectory under the program directory. They have the file extensions of “r3a”.  

You may open these files, perform the analyses, and review the results.  However, in order to 

get yourself familiar with the program, you are strongly encouraged to create these models from 

scratch.   

 

Suggested modeling steps list the major steps to create each model.  These steps serve only as a 

guide and not an exact step-by-step procedure in the creation of the model.  We trust you as an 

engineer to be creative in using the many different model-creation methods in the program.  

The General Modeling Guide on the following page is a good starting point.  All examples use 

the default settings in the program unless specified.  For example, if no load case or load 

combination is defined, the “Default” load case or “Default” combination will be used.  No 

stress averaging is used for finite elements unless explicitly specified. 

 

Result checking for each problem usually starts with displacements.  The reason for this is 

simple. The program uses the stiffness method and therefore is displacement-based.  If the 

displacements were wrong, nothing else would be right.  Other results such as forces and 

moments may be more relevant or important to you as an engineer.  However, they are not the 

primary verification parameters and are provided where applicable. 

 

Important comments are summarized at the end of each example.  They explain the modeling 

techniques and results. 
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General Modeling Guide 
 

Activity Menus 

Set up units. Settings | Units 

Define materials, sections, and thicknesses Geometry | Materials, Sections, Thicknesses 

Construct geometry.   

Start with generating commands whenever 

possible; draw individual nodes and elements 

whenever you have to; use DXF file if you are 

CAD proficient; use Revit Link if you have 

Autodesk Revit Structure. 

Geometry | Generate Frames, Rectangular 

Shell4s etc.; Geometry | Draw Node, 

Member, Shell4; File | Import from DXF; 

File | Append File 

Select nodes or elements 

View | Window/Point Select, Line Select, 

Select by ID, Select by Properties, Flip 

selection etc. 

Freeze or thaw View | Freeze Selected, Thaw 

Assign materials, sections, and thicknesses 

Geometry | Materials, Sections, Thicknesses. 

Assign | Member Properties, Shell Properties 

Assign | Member Properties, Shell Properties 

etc. 

Define boundary conditions Geometry | Supports, Springs 

Define load cases and load combinations Loads | Load Cases, Load Combinations 

Assign loads 
Loads | Nodal Loads, Point Loads, Line 

Loads, Surface Loads, etc. 

Assign masses 
Loads | Additional Masses, Analysis | 

Frequency Analysis 

Modify input data Input Data, Edit 

Define response spectra Loads | Response Spectra Library 

Review Input View | Annotate, Loading Diagrams, Render 

Set analysis options Analysis | Analysis Options 

Perform analysis 
Analysis | Static Analysis, Frequency 

Analysis, Response Spectrum Analysis 

Review analysis results 

Analysis Result, View | Shear & Moment 

Diagram, Contour Diagram, Deflection 

Diagram, Mode Shape 

View or print reports 
File | Text Report, Print Current View, 

Capture Images 
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Tips: 

 

1.  Use Edit | Undo when you make a mistake. 

 

2.  Use spreadsheet input when you want to combine it with graphical input, or when you are 

not comfortable with graphical input. 

 

3. Try to remember some useful keyboard shortcuts 

UP or DOWN or LEFT or RIGHT for panning 
[CTRL] + UP or DOWN or LEFT or RIGHT for zooming 
[SHIFT] + UP or DOWN or LEFT or RIGHT for rotating 
F8 for quick rendering 
ESC to clear selection or get out of troubles.  Press twice if you have to. 
 

4. Views and selections may be saved and recalled. 

 

5. Commands under Assign menu allow you to assign properties, boundary conditions and loads 

continuously. 

 

6. Use quad-precision skyline solver for numerically sensitive structures such as one with rigid 

diaphragms.  
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Example 1: A Cantilever Beam 

 

Problem Description 

 

A 100-inch long cantilever beam is subjected to a tip load of -10,000 lbs. 

Material properties: E = 2.9e7 psi, ν = 0.3 

Section properties: Ix = 200 in^4, Ay = 8.33333 in^2 

Analyze the beam for the following two cases: 

a). Model the beam with one frame element.  Verify the vertical displacement and rotation at 

the tip of the beam, with/without the shear deformation considered.   

b). Model the beam with 1,000; 10,000; 20,000; and 50,000 members.  Analyze each model 

with the double-precision and quad-precision solver.  Compare the vertical displacements 

without shear deformation considered. 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the beam geometry by Geometry | Generate | Rectangular Frames.  For 

example, to generate 1,000 members (each with 0.1 inch in length), enter a distance list 

of “1000@0.1” in the X direction.  Do not enter anything for the Y and Z directions.  

▪ Select all members, define and assign the material properties by Geometry | Materials. 

Make sure “Assign active material to currently selected elements” is checked in the 

dialog box. 

▪ Select all members, define and assign the section properties by Geometry | Sections.  

Make sure “Assign active section to currently selected members” is checked in the dialog 

box. 

▪ Press ESC key to unselect all nodes and elements.  Select the first node by View | Select 

by IDs, and assign it a fixed support by Geometry | Supports. 

▪ Select the last node by View | Select by IDs, and assign it a nodal load of -10,000 lb in 

the global Y direction.  The load is assigned to the built-in load case called “Default”.  

Real3D also provides a load combination called “Default” which is 1.0 * “Default” load 

case by default. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Frame”. Check or uncheck “Consider shear deformation on members”.  Select the 

double-precision or quad-precision skyline solver. 

 

Results 

 

The displacement at the tip of the beam may be calculated by hand as follows: 

𝐺 =
𝐸

2(1+𝜈)
=  11,153,846 psi 
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𝛥 =
𝑃𝐿3

3𝐸𝐼
= −0.5747 in (shear deformation ignored) 

𝛥 =
𝑃𝐿3

3𝐸𝐼
+

𝑃𝐿

𝐴𝑦𝐺
= −0.5855 in (shear deformation considered) 

𝜃 =
𝑃𝐿2

2𝐸𝐼
= −0.00862radian 

 

The following table shows the tip displacement and rotation of the beam modeled with one 

element.  The comparison between the program and theoretical results is excellent. 

 

 
Without shear deformation With shear deformation 

Real3D Theoretical Real3D Theoretical 

Displacement -0.5747 -0.5747 -0.5855 -0.5855 

Rotation -0.00862 -0.00862 -0.00862 -0.00862 

 

The following table shows the tip displacements of the beam modeled with 1000; 10,000; 

20,000; and 50,000 elements.  Shear deformations are ignored.  The four models are solved 

with the double-precision and the quad-precision solvers of the program. 

 

Solver 
Number of elements 

1,000 10,000 20,000 50,000 

Double-

precision 

Skyline 

-0.5748 -0.6522 -0.1534 No solution 

Quad-precision 

Skyline 
-0.5747 -0.5747 -0.5747 -0.5747 

 

Comments 

 

This is probably the simplest structural model that can be solved by either hand or an analysis 

program.  However it could be turned into a very challenging numerical problem as shown in 

the example.  The standard double-precision solver, which is the predominant and only solver 

in almost all other analysis programs, tends to deteriorate in solution accuracy as the number of 

elements increases.  In the example, the double-precision solver becomes unstable after 10,000 

elements.  For the model with 50,000 elements, some diagonal terms in the global stiffness 

matrix even become negative during factorization process. The solver has to terminate and the 

solution is not obtainable anymore.  No results is better than wrong results.  Try this model 

on your familiar structural analysis software! 

 

Real3D implements a unique quad-precision solver that is extremely accurate and stable in 

solution.  Its superiority is demonstrated in that it gives consistent and correct results up to 

50,000 elements. You are encouraged to try even more elements to solve this problem.  Just 

make sure you have enough computer memory to handle large models.  If you generate a large 

model by splitting existing members, make sure you renumber the nodes after splitting to 

minimize the bandwidth in the model.  
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Example 2: A Truss 

 

Problem Description 

 

A truss with a span of 30 ft and a height of 7.5 ft is loaded with six concentrated loads at joints 

[Ref. 9, pp355].  Default material and section properties in the program are used. 

Determine the axial forces of the truss members and the support reactions 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the drawing grid by Geometry | Drawing Grid.  Enter a distance list of 

“4@7.5” for the X direction and a distance list of “2@3.75” for the Y direction. 

▪ Draw the truss members by Geometry | Draw Member.  Point to the intersections of the 

drawing grid and left-click the mouse from point to point.  The drawing action is 

continuous.  Right click the mouse to start drawing from a new location. 

▪ Assign the nodal loads to the joints by Loads | Nodal Loads. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Truss”.    

 

Results 

 

The comparison between the program and the referenced results is excellent. 

 

 Real3D  [Ref. 9] 

Chord B1 – Axial force (kips) 4.44 4.44 

Chord B8 – Axial force (kips) -4.964 -4.96 

Support  Reaction (kips) 3.12 3.12 

 

Comments 

 

No displacements are given in the reference and therefore not compared.  Default material and 

section properties are used because the truss is determinant and the displacements are not 

desired.  
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Example 3: Linear and Non-linear Nodal Springs  

 

Problem Description 

 

A 2-span continuous beam is supported by three springs.  Each span is 10 inches long.  A 

concentrated moment M = 100 lb-in is applied at the middle spring.  Default material and 

section properties in the program are used. 

Spring constants: Ky = 10 lb/in 

The left and middle springs are linear. 

Analyze the model for the following two cases. 

a). The right spring is linear 

b). The right spring is compression only 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Input nodal coordinates for Nodes 1, 2, 3 by Input Data | Nodes 

▪ Input the two members by Input Data | Members.  Use default material (=1), section 

(=1), and local angle (=0) for both members. 

▪ Input the three nodal springs by Input Data | Springs | Nodal Springs.  Spring flags for 

the left and middle springs are “000000”.  Spring flag for the right spring is “000000” 

for case a) and “010000” for case b).  Enter the spring constant Ky = 10 for all springs.  

▪ Input a support at the N1 by Input Data | Supports.  The support has the flag of 

“100000” and 0s for all forced displacements.  

▪ Input the nodal moment for N2 by Input Data | Nodal Loads. Enter “5” for the load 

direction (OZ) and “100” for the load value. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Frame”.  Set the maximum nonlinear iterations to be “10”. 

 

Results 

 

In case a), a force couple is developed in the left and right springs.  The middle spring has a 

zero force.  Fcouple = M / (20 in) = 5 lb.  Δ3y = Fcouple / Ky = 0.5 in. 

 

In case b), a force couple is developed in the left and middle springs.  The right spring is 

eliminated because it is compression-only and a positive displacement occurs at N3.  Fcouple = M 

/ (10 in) = 10 lb.  Δ2y = Fcouple / Ky = 1 in. 
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Displacements and spring reactions from Real3D are shown in the following table.  They are 

identical to the theoretical results. 

 

 Displacements (in) Spring reactions (lb) 

 N1 N2 N3 N1 N2 N3 

Case a -0.5 0 0.5 5 0 -5 

Case b -1 1 3 10 -10 0 

 

Comments 

 

The problem is linear for case a) and nonlinear for case b).  The program performs 3 iterations 

for case b).  The first iteration includes all three springs.  The second iteration eliminates the 

compression spring.  The third iteration checks for convergence.   

 

This is a very simple problem that involves nodal springs only.  More complicated problems 

may be solved just as easily.  The program supports line and surface springs that may be 

applied to members and shells.  Line springs may be used in modeling beams on grade and 

surface springs may be used in modeling mat (Winkler) foundations.  Both line and surface 

springs may be linear or nonlinear (compression-only or tension only).  

 

Default material and section properties are used because they do not affect the results in the 

example.  
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Example 4: A Portal Frame With P-Delta  

 

Problem Description 

 

The following portal frame [Ref. 7, pp252] has a span of 60 ft and a column height of 24 ft.  

The beam is vertically loaded with 60 kips placed at 20 ft from the left end of the beam.  The 

right column is vertically loaded with 120 kips.  A horizontal load of 6 kips is applied at the 

joint of the beam and the left column.  Each column is modeled with 2 members.  The beam is 

modeled with a single frame element. 

Columns:  W10x45, A = 13.3 in2, Iz = 248 in4 

Beam: W27x84, A = 24.8 in2, Iz = 2850 in4 

Material: E = 2.9e7 psi, ν = 0.3 

Perform analysis for the following two cases: 

a). First order (Linear) elastic analysis 

b). Second order (P-Delta) elastic analysis 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the 2D frame by Geometry | Generate | Rectangular Frames.  Enter a distance 

list of “60” for the X direction and a distance list of “24” for the Y direction.  Do not 

enter anything for the Z direction.  Select “Pinned” supports at the bottom of the dialog. 

▪ Select the lower horizontal beam generated and delete it by Edit | Delete. 

▪ Select the two columns and split each into 2 members by Edit | Split Members. 

▪ Select all members, define and assign the material properties by Geometry | Materials. 

Make sure “Assign active material to currently selected elements” is checked in the 

dialog box. 

▪ Select the four columns, define and assign the column section properties by Geometry | 

Sections.  Make sure “Assign active section to currently selected members” is checked 

in the dialog box. 
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▪ Select the horizontal beam, define and assign the member section properties by Geometry 

| Sections.  Make sure “Assign active section to currently selected members” is checked 

in the dialog box. 

▪ Assign the nodal loads and point loads of “Default” load case by Loads | Nodal Loads, 

Point Loads.  Make sure you select the nodes or member beforehand. 

▪ Create two load combinations by Loads | Combinations.  Set a load factor of 1.0 for the 

“Default” load case for each combination. Set the second combination to perform the P-

Delta analysis. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Frame”.  Uncheck “Consider shear deformation on members”. 

 

Results 

 

The comparison between the program and the referenced results is good. 

 

  Real3D [Ref. 7] 

Linear 

Maximum Displacement (in) 4.387 4.4 

Max + moment in beam (in-kips) 8707.7 8708 

Max – moment in beam (in-kips) 2044.3 2044 

P-Delta 

Maximum Displacement (in) 8.26 8.1 

Max + moment in beam (in-kips) 9079.4 9078 

Max – moment in beam (in-kips) 2663.3 2661 

 

Comments 

 

The portal frame is analyzed by first order and second order elastic methods.  Significant stress 

stiffening effect is observed.  Although each physical column is modeled by 2 members, the 

program accounts for the P-Delta (P-Δ) effect very well even without splitting columns.  

However, you must split each column into more segments to account for p-delta (P-δ) effect.  

The same is also true when buckling analysis is desired. 

 

The program does not perform buckling analysis directly.  You may estimate the buckling load 

through trial-and-error with different load factors in the P-Delta load combination.  The 

buckling load factor (λ) given by the reference [Ref. 7] is 2.2.   
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Example 5: Rectangular Plate 

 

Problem Description 

 

Two 2 x 2 inch square plates [Ref. 4, pp3-20] are clamped and simply supported along their 

edges respectively.  Each plate is loaded with two sets of loads in two different load cases.  

The first set load is a point load applied at the center of the plate.  The second set load is a 

uniform pressure applied to the entire plate.  Use a 10x10 mesh. 

Material:  E = 1.7472e7 psi; ν = 0.3 

Thicknesses: t = 1.0e-4 inch.   

Point load P = 4e-4 lb 

Uniform pressure p = 1e-4 lb/in^2 

Determine the deflections at the center of plates, using both the thin Kirchhoff and the thick 

MITC4 plate formulations. 

  

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the first plate by Geometry | Generate | Rectangular Shell4s.  Enter a distance 

list of “10@0.2” for the X direction and a distance list of “10@0.2” for the Y direction. 

▪ Select all shell elements generated and copy them to a new location by Edit | Duplicate.  

Enter valid copy distances so the new plates will not overlap with the existing shells.  

For example, DeltaX=3, DeltaY=0, and DeltaZ = 0. 

▪ Select all shell elements, define and assign material properties by Geometry | Materials. 

Make sure “Assign active material to currently selected elements” is checked in the 

dialog box. 

▪ Select all shell elements, define and assign the shell thickness properties by Geometry | 

Thicknesses.  Make sure “Assign active thickness to currently selected shells” is 

checked in the dialog box. 

▪ Press ESC key to unselect all.  Select the nodes along all edges of the first plate model 

and assign them pinned supports by Geometry | Supports.  Select the nodes along all 

edges of the second plate model and assign them fixed supports by Geometry | Supports.   
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▪ Define two load cases named “Point” and “Uniform”. 

▪ Define two load combinations.  In the first load combination, set the load factor of 1.0 

for load case “Point” and 0s for other load cases.  In the second load combination, set 

the load factor of 1.0 for load case “Uniform” and 0s for other load cases.   

▪ Select center nodes of the two plate models, assign them the point loads of load case 

“Point” by Loads | Nodal Loads. 

▪ Select all shell elements, assign them the uniform loads of case “Uniform” by Loads | 

Surface Loads. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Plate Bending”.   Check or uncheck “Use Kirchhoff thin plate bending formulation for 

rectangular shells”. 

 

Results 

 

The comparison of the deflections (inches) at the center of each plate between the program and 

the referenced results is excellent. 

 

Boundary Loading 
Real3D 

[Ref. 4] 
MITC4 Kirchhoff 

Simple 
Point 11.555 11.762 11.60 

Uniform 4.049 4.044 4.062 

Clamped 
Point 5.475 5.750 5.60 

Uniform 1.256 1.29 1.26 

 

Comments 

 

This is one of the standard test problems proposed to test the effectiveness of plate elements in 

bending [Ref. 4].  Closed form solutions exist for both plates under point and uniform loading 

[Ref. 5, 6].  The problem is solved using both thick (MITC4) and thin (Kirchhoff) plate bending 

formulations.  The results from both formulations are very close and compared well with those 

given by the reference.   

 

It is important to point out that the MITC4 thick plate element can be used to model both a thick 

plate where shear deformation may be significant and a thin plate where shear deformation is 

negligible.  When it is used to model a very thin plate as in this example, the MITC4 produces 

results close to those produced by the Kirchhoff thin plate element.  The MITC4 plate element 

is free from shear locking, and is insensitive to distortion of element geometry.  It is arguably 

the best plate bending element currently available.   
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Example 6: Circular Plate On Grade 

 

Problem Description 

 

A circular steel plate with a thickness of 0.2 inch and a diameter of 20 inches is simply supported 

along its edge [Ref. 6 pp326-327 & pp 380-381].  The plate is loaded with a uniform load of 3 

lb/in2.   

Material:  E = 3e7 psi; ν = 0.285 

Thicknesses: t = 0.2 inch.   

Determine the deflection and moment at the center for the following two cases:  

a). No elastic foundation. 

b). An elastic foundation with a modulus of 20 lb/in3. 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the circular plate by Geometry | Generate | Circular Shell4s.  Enter a radius of 

10 and segments of 80.  Select “Pinned” supports along the edge. 

▪ Select all shell elements, define and assign material properties by Geometry | Materials. 

Make sure “Assign active material to currently selected elements ” is checked in the 

dialog box. 

▪ Select all plate elements, define and assign the shell thickness properties by Geometry | 

Thicknesses.  Make sure “Assign active thickness to currently selected shells” is 

checked in the dialog box. 

▪ Select all shell elements, assign them the surface load by Loads | Surface Loads.  

▪ For case b) only, Select all shell elements, assign them surface springs by Geometry | 

Springs. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Plate Bending”.   Uncheck “Use Kirchhoff thin plate bending formulation for 

rectangular shells”. 

 



 148  

 

 

 

Results 

 

The comparison of deflections and moments (absolute values) at the center of each plate between 

the program and the referenced results is excellent.  Moments are the same in all directions at 

the center. 

 

 @ center Real3D [Ref. 6] 

Case a 

without elastic foundation 

Deflection (in) 0.089 0.0883 

Moment (in-lb/in) 61.54 61.5 

Case b 

with elastic foundation 

Deflection (in) 0.064 0.0637 

Moment (in-lb/in) 43.21 43.3 

 

Comments 

 

This example problem tests the reliability of the MITC4 plate bending element.  It also shows 

how surface springs may be used to model an elastic (Winkler) foundation.  Two separate 

models are used for case a) and case b).  The generated shell elements are mostly rectangular.  

Some non-rectangular shell elements exist along the edge. 

 

A relatively fine mesh is employed in order to minimize the discretization error along the edge.  

The default MITC4 thick plate element is used.  It is important to point out that Kirchhoff thin 

plate elements should not be used here due to the existence of non-rectangular elements.  
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Example 7: A Cantilever Plate (In-Plane) 

 

Problem Description 

 

A 6 x 0.2 inch cantilever plate is loaded with two separate sets of loads [Ref. 4, pp3-20]. 

a). An in-plane shear of 1 lb at the tip. 

b). An axial load of 1 lb at the tip. 

Material:  E = 1.0e7 psi; ν = 0.3 

Thicknesses: t = 0.1 inch. 

Determine the tip displacements in the directions of applied loads, using a 6 x 1 mesh as 

suggested by the reference. 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the first plate by Geometry | Generate | Rectangular Shells.  Enter a distance 

list of “6@1” for the X direction and a distance list of “0.2” for the Y direction. 

▪ Select all shell elements, define and assign material properties by Geometry | Materials. 

Make sure “Assign active material to currently selected elements” is checked in the 

dialog box. 

▪ Select all shell elements, define and assign the shell thickness properties by Geometry | 

Thicknesses.  Make sure “Assign active thickness to currently selected shells” is 

checked in the dialog box. 

▪ Press ESC key to unselect all.  Select the bottom-left node and assign it a fixed support.  

Select the top-left node and assign it a support restrained in Dx. 

▪ Define two load cases named “InPlaneShear” and “Axial”. 

▪ Define two load combinations.  In the first load combination, set the load factor of 1.0 

for load case “InPlaneShear” and 0s for other load cases.  In the second load 

combination, set the load factor of 1.0 for load case “Axial” and 0s for other load cases.   

▪ Select two nodes at the tip, assign each node a 0.5 lb, Y-direction nodal loads of load case 

“InPlaneShear” by Loads | Nodal Loads.  Select two nodes at the tip, assign each node a 

0.5 lb, X-direction nodal loads of load case “Axial” by Loads | Nodal Loads. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Plane Stress”.   Check or uncheck “Use incompatible formulation for shell membrane 

actions or bricks”. 

 

Results 

 

The comparison of the displacements (inches) in the directions of loads between the program and 

the referenced results is mixed.   
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 Membrane formulation Real3D [Ref. 4] 

Case a) 
Compatible -0.0101 0.1081 

Incompatible -0.1073 0.1081 

Case b) Compatible or Incompatible 3.0e-5 3.0e-5 

 

Comments 

 

The example problem tests the in-plane (membrane) component of the shell element.  Two 

separate analyses are performed for case a) and case b).  The incompatible membrane 

formulation models in-plane bending very well.  The compatible membrane formulation is too 

stiff to model in-plane bending when a coarse mesh is used.  However, both formulations work 

well when fine element meshes are used.  
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Example 8: Brick Patch Test 

 

Problem Description 

 

This is a patch test for a unit cube [Ref. 4 pp3-20].  The cube is modeled with 7 eight-node 

brick elements.  Nodal coordinates, element connectivity and boundary conditions are given in 

the following tables.  Boundary conditions are given as forced displacements.  No additional 

loads are prescribed. 

Material:  E = 1.e6 psi; ν = 0.25 

Find stresses for each element. 

 

 
 

Nodal coordinates (inch) 

 

 
 

Displacement field 

u = 0.001 * (2x + y + z) / 2 

v = 0.001 * (x + 2y + z) / 2 

w = 0.001 * (x + y + 2z) / 2 

Forced displacements (inch) on boundary 

 

 
All strains are constant. For example 𝜀𝑥 =

𝜕𝑢

𝜕𝑥
= 0.001 

𝜀𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= 0.001 

 

 

  

Node X Y Z 

1 0.249 0.342 0.192 

2 0.826 0.288 0.288 

3 0.85 0.649 0.263 

4 0.273 0.75 0.23 

5 0.32 0.186 0.643 

6 0.677 0.305 0.683 

7 0.788 0.693 0.644 

8 0.165 0.745 0.702 

9 0 0 0 

10 1 0 0 

11 1 1 0 

12 0 1 0 

13 0 0 1 

14 1 0 1 

15 1 1 1 

16 0 1 1 

 

NODE Dx Dy Dz 

9 0 0 0 

10 0.001 0.0005 0.0005 

11 0.0015 0.0015 0.001 

12 0.0005 0.001 0.0005 

13 0.0005 0.0005 0.001 

14 0.0015 0.001 0.0015 

15 0.002 0.002 0.002 

16 0.001 0.0015 0.0015 
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Element Connectivity 

 

Element Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 

1 1 2 3 4 5 6 7 8 

2 4 3 11 12 8 7 15 16 

3 9 10 2 1 13 14 6 5 

4 2 10 11 3 6 14 15 7 

5 9 1 4 12 13 5 8 16 

6 9 10 11 12 1 2 3 4 

7 5 6 7 8 13 14 15 16 

 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Input the nodal coordinates by Input Data | Nodes. 

▪ Modify the default material by Input Data | Materials. 

▪ Input the bricks by Input Data | Bricks.  Use the default material (=1). 

▪ Input the boundary conditions by Input Data | Supports.  Enter the support flag 

“111000” for each support.  Enter the forced displacements according to the table 

above. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “3D 

Brick”. 

 

Results 

  

The comparison of stresses (psi) between the program and the referenced results is excellent.  

Each stress component is uniform in all seven elements. 

 

 Sxx Syy Szz Sxy Syz Sxz 

Real3D 1999.982 1999.982 1999.982 399.999 399.999 399.999 

[Ref. 4] 2000 2000 2000 400 400 400 

 

Comments 

 

The brick element passes the patch test.  Therefore, “the results for any problem solved with the 

element will converge toward the correct solution as the elements are subdivided.” [Ref. 4]  The 

tiny differences in stresses are due to the penalty approach employed in support enforcement. 
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Example 9: Scodelis-Lo Roof 

 

Problem Description 

 

The Scodelis-Lo barrel roof [Ref. 4 pp3-20, Ref. 2] has a length of 50 ft, a radius of 25 ft, and a 

sweeping angle of 80 degrees.  The roof is supported on rigid diaphragms along its two curved 

edges (Dx and Dy fixed, but not Dz). The two straight edges are free.  A surface load of -90 

lb/ft^2 in the global Y direction (self-weight) is applied to the entire roof. 

Material: E = 4.32e8 lb/ft^2 (3e6 psi);  v = 0.0; 

Thickness: t = 0.25 ft. 

Find the maximum deflection and moments. 

 

 
 

 

Suggested Modeling Steps 

 

Due to the symmetry, only a quarter of the roof is modeled.  A 6 x 6 mesh is used.  The 

boundary conditions are specified in the following table. 

 

Nodes Fixed DOFs 

N1 to N6 Z, OX, OY 

N7 X, Z, OX, OY, OZ 

N14, N21, N26, N35, N42 X, OY, OZ 

N43 to N48 X, Y, OZ 

N49 X, Y, OY, OZ 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate members along an arc by Geometry | Generate | Arc Members.  Enter a radius 

of 25, segments of 6, start angle 50, end angle 90. 

▪ Select all nodes and members, extrude members to shells by Edit | Extrude | Extrude 

Members to Shell4s.   Enter a distance list of “6@4.1666” and direction of the global Z.  

Check both “Merge nodes and elements” and “Delete selected members after extrusion”. 
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▪ Select all shell elements, define and assign the shell thickness properties by Geometry | 

Thicknesses.  Make sure “Assign active thickness to currently selected shells” is 

checked in the dialog box. 

▪ Select the boundary nodes and apply proper supports as specified above by Geometry | 

Supports.  You need to select and apply multiple times. 

▪ Select all shell elements, assign surface load by Loads | Surface Loads 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “3D 

Frame & Shell”.  Check or uncheck “Use Kirchhoff thin plate bending formulation for 

rectangular shells”.  Check or uncheck “Use incompatible formulation for shell 

membrane actions or bricks”.   

 

Results 

 

The comparison of displacements and moments between the program and the referenced results 

is excellent.  Theoretical maximum vertical displacement is given by MacNeal & Harder [Ref. 

4, pp3-20]. Other theoretical values are approximate readings (with different sign convention for 

moments) from graphs given by Zienkiewicz [Ref. 2 pp350-351].  The maximum Dy and Myy 

occur at the mid-point along the free edges.  The maximum Mxx occurs at the center of the 

longitudinal middle section.  The maximum Dz and Mxy occur at the corner points at supports. 

 

Membrane  Compatible Incompatible 
References 

Bending  Kirchhoff MITC4 Kirchhoff MITC4 

Displacement 

Vertical (in) 
-3.475 -3.489 -3.672 -3.687 

-3.629 

[Ref. 4] 

Displacement 

Longitudinal (in) 
0.1317 0.1317 0.1414 0.1414 

app. 0.144 

[Ref. 2] 

Mxx (ft-lb/ft) -1954 -1923 -2093 -2056 
app. 2100 

[Ref. 2] 

Myy (ft-lb/ft) 636.0 633.9 667.9 666 
app.-650 

[Ref. 2] 

Mxy (ft-lb/ft) -1204 -1199 -1264 -1260 
app. 1300 

[Ref. 2] 

 



 155  

 
Displacement contour (MITC4-bending, compatible formulation) 

 

. 

Mxx contour (MITC4-bending, compatible formulation) 

 

Comments 

 

The example is the de-facto standard test problem for shells due to the strong coupling of the 

bending and membrane actions.  The problem is solved using the shell element with different 

membrane and bending formulations from which excellent results are obtained.  The 

incompatible membrane formulation yields results closer to the referenced values.   

 

The use of symmetry saves computing time and memory, but requires careful thinking with 

regard to the boundary conditions.  You may model the entire roof by simply fixing Dx, Dy 

along the curved edges and Dz at the longitudinal central section.  
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Example 10: A Shear Wall 

 

Problem Description 

 

A two-story concrete shear wall is subjected to two horizontal point forces at the floor levels. To 

account for the floor diaphragm action, each point load is distributed evenly to all nodes at the 

floor.  The wall is 37.5 ft long and 21 ft high, with six openings of 7.5 x 4.5 ft. 

Material:  E = 4e6 psi; ν = 0.15 

Thicknesses: t = 12 inch. 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the plate by Geometry | Generate | Rectangular Shells.  Enter a distance list of 

“3@1, 21@1.5, 3@1” for the X direction and a distance list of “3@1, 10@1.5, 3@1” for 

the Y direction. 

▪ Select the middle eight nodes at each opening and delete them.  The shells that are 

connected to these nodes are deleted automatically. 

▪ Select all shell elements, define and assign material properties by Geometry | Materials. 

Make sure “Assign active material to currently selected elements” is checked in the 

dialog box. 

▪ Select all shell elements, define and assign the shell thickness properties by Geometry | 

Thicknesses.  Make sure “Assign active thickness to currently selected shells” is 

checked in the dialog box. 

▪ Press ESC key to unselect all.  Select the nodes at the bottom and assign them fixed 

supports. 

▪ Select the all nodes at each story level and assign them nodal loads by Loads | Nodal 

Loads. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Plane Stress”.   Check “Use incompatible formulation for shell membrane actions or 

bricks”. 

 

Results 
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No comparison of results is available.  Displacement Dx contour and Stress Syy contour is 

provided in the following.   

 

 
Displacement Dx contour on deflected shape 

 

 

 
Stress Syy contour 

 

To verify the results, the horizontal shear is checked at the middle elevation of the second story 

openings.  The following table shows the “Membrane nodal resultants” of four piers by View | 

Annotate (annotation mode = “Annotate selected entities” to avoid congestion of texts).  You 

may also view the same nodal resultants in a spreadsheet by Result Data | Shell4 Nodal 

Resultants.  You can then copy and paste selected data to your preferred spreadsheet program to 

perform summation or other computations.  It is important to point out that nodal resultants are 

expressed in the element local coordinate systems. 
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Pier 1 

 

ΣFx =  

0.719 + 1.058 +1.406 + 2.025 + 

0.751 + 0.172  

= 6.131 kips 
 

Pier 2 

 

ΣFx =  
1.786 + 2.511 + 5.079 + 5.219 

+2.445 + 1.830 

= 18.87 kips 

 

  

Pier 3 

 

ΣFx = 18.87 kips 

 

 

Pier 4 

 

ΣFx = 6.131 kips 

 

 

 

 
All Piers ΣFx = 6.131 * 2 + 18.87 * 2 = 50.002 (app.= 50 kips)  

 

Membrane nodal resultants of four piers at the middle elevation of the second story 

 

Comments 

 

The example problem shows how to perform structural analysis on a shear wall.  Although no 

comparison of results is available, we demonstrate the reliability of the program by checking the 

horizontal shear.   

 

In designing concrete sections, we generally need forces and moments instead of stresses.  We 

may acquire axial forces and moments in the same manner as in shears.  For example, to 

determine the moment at the second pier above, we may sum the moments by nodal resultants Fy 

about the center of the pier. 
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Fyi (kips) Xi (ft) Fyi * Xi (ft-kips) 

-1.017 -2.25 2.28825 

2.929 -0.75 -2.19675 

-4.978 -0.75 3.7335 

5.071 0.75 3.80325 

-2.596 0.75 -1.947 

1.542 2.25 3.4695 

ΣFy = 0.951  sum = 9.15075 

 

Internal Forces and Moment at middle of the second pier:  Axial Force = 0.951 kips, Shear 

Force = 18.87 kips, Moment = 9.15075 ft-kips 

 

It is pretty tedious to perform the nodal resultant summation above.  Real3D allows you to 

define shell nodal resultant group (Geometry | Shell4 Nodal Resultant Group) and then 

automatically perform such calculations (Analysis Results | Shell4 Group Nodal Resultants) as 

shown below.   

 

 
 

 
 

You are encouraged to model this wall with members and compare the results with those in this 

example.  Care should be exercised in segmenting the members and assigning them appropriate 

section properties.  Since the sections of the members are relatively deep, shear deformations 

must be considered. 
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Example 11: Frequencies of Cantilever Beam 

 

Problem Description 

 

Analyze the vibration frequencies for the following cantilever beam (L = 6m) under its own 

weight. 

Material properties: E = 20600 KN/cm^2, ν = 0.3, weight density = 7850 Kgf/m^3 

Section properties: Ix = 4079.07 cm^4, Ax = 53.1612 cm^2, Ay = Az = 0 

The beam is optionally subjected to a compressive horizontal tip load of P = 500 KN 

Analyze the beam for the following two cases: 

a). Find the lowest 3 frequencies without the effect of axial load 

b). Find the lowest 3 frequencies with the effect of axial load 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the beam geometry by Geometry | Generate | Rectangular Frames.  For 

example, to generate 8 members (each with 0.75 m), enter a distance list of “8@0.75” in 

the X direction.  Do not enter anything for the Y and Z directions.  

▪ Select all members, define and assign the material properties by Geometry | Materials. 

Make sure “Assign active material to currently selected elements” is checked in the 

dialog box. 

▪ Select all members, define and assign the section properties by Geometry | Sections.  

Make sure “Assign active section to currently selected members” is checked in the dialog 

box. 

▪ Press ESC key to unselect all nodes and elements.  Select the first node by View | Select 

by IDs, and assign it a fixed support by Geometry | Supports. 

▪ Apply self-weight by running Loads | Self Weight.  Set self-weight direction to be 

global Y and self-weight multiplier -1. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Frame”.  Uncheck “Consider shear deformation on members”.   

▪ From Analysis | Frequency Analysis, check “Convert loads to masses”, set number of 

modes 3, number of iteration vectors 8, tolerance of eigenvalue 1e-6 and maximum 

number of subspace iterations 18. 

For Case a), do the following steps 

▪ Run Frequency Analysis from Analysis | Frequency Analysis 

For Case b) do the following steps 

▪ From Input Data | Calculated Masses, click on “Convert to Additional Masses”.  This is 

to avoid converting the external load to mass (although it is not necessary in this case 

because the load is not in the gravity direction). 

▪ Select the last node by View | Select by IDs, and assign it a nodal load of -500 KN in the 

global X direction. 
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▪ From Loads | Load Combinations, set the default load combination to “Perform P-Delta 

Analysis on this load combination”. 

▪ From Analysis | Frequency Analysis, make sure “Convert loads to masses” is unchecked.  

Then click on Run Frequency Analysis. 

 

Results 

 

The frequencies without considering axial load can be calculated based with the following 

formulae [Ref. 14]: 

𝜛𝑛 = 𝛼𝑛√
𝐸𝐼

𝑚𝐿4
  and 𝑓𝑛 = 2𝜋𝜛𝑛 

where m is the linear mass density 

m = 7850 * 53.1612 = 41.731542 kg/m 

I = 4.07907 10-5 m^4 

L = 6 m 

E = 2.06 10-11 N/m^2 

𝛼1 = 3.51602;  𝛼2 = 22.0345; 𝛼3 = 61.6972 

𝜛𝑛 = 𝛼𝑛
√

2.06 ∗ 1011 ∗ 4.07807 ∗ 10−5

41.731542 ∗ 64
= 12.4646𝛼𝑛 

 

There are no closed form formulae for calculating frequencies when axial load influence is 

considered.  The results are therefore compared with another finite element program, AxisVM 

6.0 

 

The following table shows the first three frequencies modeled with 8 elements.  The 

comparison between the program and theoretical results is excellent.  The comparison between 

the program and AxisVM 6.0 is identical. 

 

Frequency 

Without axial load considered With axial load considered 

Real3D 
Theoretical 

(exact) 
Real3D AxisVM 6.0 

𝑓1 (Hz) 6.9255 6.98 2.6005 2.60 

𝑓2 (Hz) 42.6551 43.71 39.4754 39.48 

𝑓3 (Hz) 117.5983 122.39 115.0347 115.03 

 

Comments 

 

The comparison between the program and theoretical results is deemed excellent because we 

used only 8 elements for the discretization.  The frequencies given by the program are lower 

than the exact ones.  Notice the mass allocated to the support is lost in the computation.  If we 

employed more elements, the finite element frequencies would definitely be closer to the exact 

continuous ones. 

 

When axial load is considered, as in Case b, the stress-stiffness concept used by Real3D to 

determine P-Delta effects is applied.  In this approach, compressive axial load effectively 

reduces the flexural stiffness of a member (axial tension increases the flexural stiffness).  With 

a lower stiffness, and equal mass, the frequencies are reduced.  
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Example 12: Frequencies of Rectangular Plate 

 

Problem Description 

 

A 9 x 6 inch plate is simply supported along its edges.  

Material:  E = 3e7 psi; ν = 0.3, weight density = 0.282938 lb/in^3 

Thicknesses: t = 0.15 inch.   

Use a 30x20 mesh. 

Determine the first three circular frequencies of the plate, using both the thin Kirchhoff and the 

thick MITC4 plate formulations. 

  

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate the plate by Geometry | Generate | Rectangular Plates.  Enter a distance list of 

“30@0.3” for the X direction and a distance list of “20@0.3” for the Y direction. 

▪ Select all shell elements, define and assign material properties by Geometry | Materials. 

Make sure “Assign active material to currently selected elements” is checked in the 

dialog box. 

▪ Select all shell elements, define and assign the plate thickness properties by Geometry | 

Thicknesses.  Make sure “Assign active thickness to currently selected shells” is 

checked in the dialog box. 

▪ Press ESC key to unselect all.  Select the nodes along all edges of the model and assign 

them pinned supports by Geometry | Supports. 

▪ Apply self-weight by running Loads | Self Weight.  Set self-weight direction to be 

global Z and self-weight multiplier 1. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Plate Bending”.   Check or uncheck “Use Kirchhoff thin plate bending formulation for 

rectangular shells”. 
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▪ From Analysis | Frequency Analysis, check “Convert loads to masses”, set number of 

modes 3, number of iteration vectors 8, tolerance of eigenvalue 1e-6, and maximum 

number of subspace iterations 18. Click on Run Frequency Analysis. 

 

 

 

 

Results 

 

The circular frequencies of a simply supported rectangular plate are calculated according to the 

following [Ref. 6]: 

𝜛𝑛 = 𝜋2(
𝑚2

𝑎2
+

𝑛2

𝑏2
)√

𝐸𝑡3

12(1 − 𝜈2)𝜌
 

where E = 3e7 psi; t = 0.15 in; ν = 0.3; a = 9 in; b = 6 in; ρ = 0.282938 / 386 * 0.15 = 1.0995e-4 

lb-sec^2/in^3 

For m = 1, n = 1: 

𝜛1 = 𝜋2(
12

92 +
12

62)√
3𝑒7∗0.153

12(1−0.32)1.0995𝑒−4
= 3636rad/sec 

For m = 2, n = 1: 

𝜛2 = 𝜋2(
22

92 +
12

62)√
3𝑒7∗0.153

12(1−0.32)1.0995𝑒−4
= 6993rad/sec 

For m = 1, n = 2: 

𝜛3 = 𝜋2(
12

92 +
22

62)√
3𝑒7∗0.153

12(1−0.32)1.0995𝑒−4
= 11189rad/sec 

 

The comparison of the circular frequencies between the program and the theoretical results is 

excellent. 

 

Circular 

frequencies 

Thin Plate 

Formulation 

Thick Plate 

Formulation 
Theoretical 

𝜛1 (rad/sec) 3633 3616 3636 

𝜛2 (rad/sec) 6982 6938 6993 

𝜛3 (rad/sec) 11179 11150 11189 

 

Comments 

 

A relatively fine mesh is employed in this example.  The thin plate finite element frequencies 

are closer to the theoretical results based on classical thin plate theory.  The frequencies given 

by thick plate formulation are a little smaller than those given by thin plate formulation.  This is 

expected because thick plate formulation accounts for shear deformation and the plate is 

therefore modeled with less stiffness.  
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Example 13: Design of Two Braced Concrete Columns 

 

Problem Description 

 

Two concrete columns A and B are part of a braced frame [Ref 16, pp568].  The frame is 

analyzed and the results of the two columns are listed below. 

 

 Column A Column B 

Size (in) 14 x14 14 x14 

Total length (ft) 20 24 

Unbraced length (ft) 18 22 

Effective length factor 0.77 0.86 

Dead Pu (kips) 80 50 

Dead Mu-top (ft-kips) -60 42.4 

Dead Mu-bottom (ft-kips) -21 -32 

Live Pu (kips) 24 14 

Live Mu-top (ft-kips) -14 11 

Live Mu-bottom (ft-kips) -8 -8 

 

Design the columns according to ACI 318-02/05 .  Use fc = 3 ksi, fy = 60 ksi 

 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Create two beam elements:  element 1 – 20 ft, element 2– 24 ft. 

▪ Select element 1 and 2, define and assign the standard material (Concrete fc = 3.0 ksi) by 

Geometry | Materials. Make sure “Assign active material to currently selected elements” 

is checked in the dialog. 

▪ Select element 1 and 2, define and assign the standard section (Rectangle 14 x 14 inch) 

by Geometry | Sections.  Make sure “Assign active section to currently selected 

members” is checked in the dialog. 

▪ Select and assign pinned support to the start node of each member by Geometry | 

Supports.  Select and assign roller support to the end node of each member by Geometry 

| Supports. 

▪ Define Dead and Live load cases by Loads | Load Cases. 

▪ Define two load combinations:  one with 1.0Dead and the other with 1.2Dead + 1.6Live.  

The former combination contains only the sustained load cases and will be used to 

calculate βd. Combination two will be used to perform the actual design.  Make sure 

“Perform Concrete Design using this Load Combination” is checked.  Also enter 

sustained load factor (1.2 in this case). 

▪ Define and apply nodal loads and moments for Dead and Live cases by Loads | Nodal 

Loads. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Frame”.  Uncheck “Consider shear deformation on members”.   

▪ Select ASTM_615 (English) rebar database by Concrete Design | RC Tools | Rebar 

Database. 
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▪ Define and assign two column design criteria by Concrete Design | Design Criteria | 

Column Design Criteria.  Make sure “Assign active criteria to selected members” is 

checked in the dialog box. 

 

 
 

▪ Set model concrete design criteria by Concrete Design | Design Criteria | Model Design 

Criteria.  Make sure the sustained load combination is selected for computing βd. 

▪ Perform the static analysis by Analysis | Static Analysis. 

▪ Perform concrete design by Concrete Design | Perform Design.  Concrete sections will 

be generated automatically based on column design criteria.  Exact 3D P-Mx-My 
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capacity surfaces will be generated and are used to check against the column internal 

forces and moments. 

 

 
 

▪ View column design results by Concrete Design | Design Output | RC Column Results.  

Detailed column section results such as interaction diagrams may be viewed or printed by 

Concrete Design | Design Output | Flexural/Axial Interaction. 

 

 
 

Results 

 

The following table shows some intermediate results during the design.  The program gives 

comparable results with the reference [Ref 16]. 
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 Column A Column B 

 Real3D [Ref 16] Real3D [Ref 16] 

Cm 0.439 0.438 0.899 0.900 

βd. 0.714 0.714 0.728 0.728 

Moment 

magnification factor 
1.000 1.000 1.191 1.200 

 

The program chooses 6#8 bars for column A and 4#8 bars for column B.  The reference gives 

4#8 bars for both column A and column B.  The program gives the unit check of 1.038 for 

column A if 4#8 bars were used.  For practical applications, a unit check of slightly over 1.0 is 

probably acceptable.  

 

Comments 

 

This example shows the program can be used to design multiple concrete columns in a fast 

fashion.  The loads are applied as nodal forces and moments.  These loads are usually obtained 

from analysis results.  For columns that are part of an unbraced frame, second-order analysis 

must be used, with consideration to stiffness adjustment according to ACI 318-02/05.  
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Example 14: Design of a Continuous Concrete Beam 

 

Problem Description 

 

The following sub-frame [Ref 17, pp 7-43], which consists of one continuous beam plus top and 

bottom columns framing into the beam, is used to perform flexural and shear design of the 

continuous beam under vertical loads. 

 

Member sizes: beam = 36 x 19.5 in; exterior columns =16 x 16 in; interior columns = 18 x 18 in.  

Story height = 13 ft. 

Service Loads: Dead = 3.9 kips/ft (including self-weight); Live = 1.8 kips/ft 

 

 
  

Design the continuous beam according to ACI 318-02/05.  Use fc = 4 ksi, fy = 60 ksi 

 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions. 

▪ Generate rectangular frame by Geometry | Generate | Frames as follows: 
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▪ Select and delete top and bottom beam elements (element 1, 2, 3, 7, 8 and 9 that were 

generated).    

▪ Select far end nodes of columns and assign fixed supports to them. 

▪ Select all members and renumber each selected member by running Edit | Re-Number | 

Re-Number Members, as shown below 

 

 
 

▪ Define three rectangular sections 36 x 19.5 in, 18 x 18 in and 16 x 16 in using Regular 

Section in Geometry | Sections.  Assign each of these sections to appropriate elements 

▪ Define 4.0 ksi material using Std Material in Geometry | Materials.  Assign this material 

to all. 

▪ Define five load cases: Dead, Live1, Live2, Live3 and Live4 by Loads | Load Cases.  

Note Live1, 2, 3 and 4 cases are used for live load patterning.  Live1 loading is applied 

to element 1 and 2.  Live2 loading is applied to elements 1 and 3.  Live3 is applied to 

element 2 only. Live4 is applied to elements 2 and 3. 

▪ Define four new load combinations: a). 1.2Dead + 1.6Live1, b). 1.2Dead + 1.6Live2 and 

c). 1.2Dead + 1.6Live3.  d). 1.2Dead + 1.6Live4.  Make sure “Perform Concrete 

Design using this Load Combination” is checked.  Also enter sustained load factor (1.2 

in this case). 

▪ Define and apply line loads for Dead, Live1, 2, 3 and 4 cases Loads | Line Loads.  Use 

View | Loading Diagram to check that the loads are applied correctly. 
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▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Frame”.  Uncheck “Consider shear deformation on members”.  Run Static Analysis to 

make sure the model is correct before we proceed to the concrete design. 

▪ Select ASTM_615 (English) rebar database by Concrete Design | RC Tools | Rebar 

Database. 

▪ Define and assign beam design criteria by Concrete Design | Design Criteria | Beam 

Design Criteria.   

 

 
 

▪ Set model concrete design criteria by Concrete Design | Design Criteria | Model Design 

Criteria.  Make sure to select the checkbox “Automatically compute support widths”. 

 

 
 

▪ Select all columns and exclude them from concrete design by Concrete Design | Design 

Criteria | Exclude Elements. 
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▪ Perform concrete design by Concrete Design | Perform Design. 

▪ To view the beam design results in tabulated form, run Concrete Design | Design Output | 

RC Beam Result for flexural design and Concrete Design | Design Output | RC Shear 

Result for shear design. 
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▪ To view the beam design result in graphics, run Concrete Design | Diagrams | RC 

Member Envelope Diagram.  The following shows the member moment envelope 

diagram. 

 

 
 

 
 

Results 
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The following table compares the design moments between the program and the reference [Ref 

17, pp 7-43]: 

 

 

 Moment (ft-kips) Real3D [Ref 17, pp 7-43] 

End Span 

Ext (-) moment -232.0 -385.9 

(+) moment 356.1 441.1 

Int (-) moment -523.6 -615.8 

Interior Span (+) moment 274.9 383.8 

 

Comments 

 

The reference [Ref 17, pp 7-43] uses the approximate coefficients method while the program 

uses the exact stiffness method.  It is apparent the former method is quite conservative.  
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Example 15: Design of Concrete Slab 

 

Problem Description 

 

The following 34 x 34 ft flat plate is supported by two fixed edges and two simply supported 

edges as well as a 16 x 16 in column in the middle. [Ref 20, pp 536-540].   

 
Factored load = 170 psf (including self-weight)  

fc = 4 ksi, fy = 60 ksi 

Slab thickness h = 6.5 in 

Concrete cover: d = 1.25 in over the central column and near the intersection of the two fixed 

edges, d = 1.0 in for the rest of the area. 

 

 Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions.  In particular, set the length unit to 

be inch for easy mesh generation. 
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▪ Generate rectangular shells by Geometry | Generate | Rectangular Shell4s as follows:   

 

 
 

▪ Define 4.0 ksi concrete material using Std Material in Geometry | Materials.  Assign this 

material to all plates.   
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▪ Define a thicknesses of 6 inches using Geometry | Thicknesses.  Assign this thickness to 

all plates. 

  

 
 

▪ Using Geometry | Supports, assign fixed supports to nodes along the left and bottom 

edges.  Assign pinned supports to nodes along the right and top edges as well as to the 

column node. 

▪ Assign normal surface load of 170 lb/ft^2 to all plates by Loads | Surface Loads. 
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▪ You may turn off the display of surface loads by View | Load Diagram. 

 

 
 

▪ Use the default load combination for concrete design from Loads | Load Combinations. 

▪ Set the analysis options by Analysis | Analysis Options.  Choose the model type “2D 

Plate Bending”.  Uncheck “Consider shear deformation on members”.  Check “Use 

Kirchhoff thin plate bending formulation for rectangular shells”.  The Kirchhoff element 

formulation is recommended over the MITC4 bending formulation for thin plate models 

that contain only rectangular elements.  Run Static Analysis to make sure the model is 

correct before we proceed to the concrete design. 
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▪ Various analysis results may be viewed by View | Contour Diagram.  The following are 

Dz displacement, plate Mxx and Mxy contours. 

 

 
Dz Displacement Contour 
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Plate Mxx Contour 

 

 
Plate Mxy Contour 

 

▪ Select ASTM_615 (English) rebar database by Concrete Design | RC Tools | Rebar 

Database. 

▪ Define two plate design criteria by Concrete Design | Design Criteria | Plate Design 

Criteria as follows.  Assign the stackArea criteria to area where bar stacking occurs – 

that is, over the central column and near the intersection of the two fixed edges.   
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▪ Select the four plates over the column node and exclude these plates from concrete design 

by Concrete Design | Design Criteria | Exclude Elements. 

 

 
 

▪ Perform concrete design by Concrete Design | Perform Design. 

▪ To view the plate flexural design results in tabulated form, run Concrete Design | Design 

Output | RC Plate Result. 
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▪ To view the plate design result in graphics, run Concrete Design | Diagrams | RC Plate 

Envelope Contour. For illustration purposes, the X-top and X-bottom design (Wood-

Armer) moment and the corresponding required steel contours are shown below.  Based 

on reinforcement contours and some commonsense, the actual reinforcement can be 

provided for final design. 

 

 
Wood-Armer Top-Mux 
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Wood-Armer Bottom-Mux 

 
Required Top-Asx 
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Required Bottom-Asx 
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Results 

 

 Real3D Ref 20 

Negative moment over column (lb-ft/ft) -11,510 -10,528 

Negative steel over column (in^2/ft) 0.5259 0.48 

Negative moment along fixed edges (lb-ft/ft) -4,412 -3,509 

Negative steel along the fixed edges (in^2/ft) 0.183 0.15 

Positive moment in outer spans (lb-ft/ft) 4,234 3,789 

Positive steel in outer spans (in^2/ft) 0.1752 0.16 

 

Comments 

 

The reference used Advanced Strip Method to compute the design moments and therefore is 

approximate in nature.  The program computes the design (Wood-Armer) moments based on 

the plate element Mxx, Myy and Mxy.  Although the two methods are fundamentally different, 

comparable results are obtained. 

 

One of the difficulties in using finite element results to perform concrete plate (or slab) design is 

stress singularity.  In this example, the slab stress around the column is theoretically infinite.  

This is reflected in stress and reinforcement spikes at the slab/column interface area.  Finer 

finite element mesh will generally exacerbate the problem.  We alleviated the problem by 

excluding the four finite elements over the column from design.  Appropriate averaging or 

redistribution of reinforcement should also be applied before the actual reinforcement is 

provided.  
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Example 16: Design of Steel Beam 

 

Problem Description 

 

Select the lightest W section for the simply supported beam of L = 50ft, Lb = 25 ft.  The 

superimposed load is 0.4 kip/ft dead load and 1.0 kip/ft live load.  Use A992 steel. 

[Ref 22, pp 435-437].   

 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions.   

 

 
 

▪ Define load cases from Loads | Load Cases 
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▪ Define the load combination from Loads | Load Combinations: make sure “Perform Steel 

Design using this Load Combination” is checked. 

 

 
 

▪ Define the material from Geometry | Materials using the standard steel Steel-A992--

Fy50.  Steel properties such as Fy and Fu are set automatically. 

 

 
 

▪ Define the section W18x97 from Geometry | Sections using the AISC table.   
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▪ Define the two nodes from Input Data | Nodes.   

 

 
 

▪ Define the one beam from Input Data | Members 
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▪ Define the two supports from Input Data | Supports 

 

 
 

▪ Define both the dead and live line loads from Input Data | Line Loads 
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▪ Define the self-weight from Input Data | Self Weight.  Make sure the self-weight acts in 

the negative global Y direction. 

 

 
 

▪ Set structural model as 2D Frame from Analysis | Analysis Options.  Run Static 

Analysis to make static analysis results available for steel design. 
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▪ Define the steel member design criteria from Steel Design | Design Criteria | Member 

Design Criteria.  Use “W” as the section prefix as we want to find the light W section.  

We could also use “W12, W18” for the section prefix if we would want to use either W12 

or W18x sections.  Make sure Cb = 0 so we will have the program calculate it 

automatically.  Important: If 0 is entered for Lb for non-continuously braced, then 

Lb is taken as the member length.  If the member is fully braced laterally, you 

must enter 0 for Lb. 

 

 
 

▪ Define the steel member input from Steel Design | Design Input | Steel Members Input.   
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▪ Perform the steel design from Steel Design | Perform Design.   

 

▪ View the steel design results from Steel Design | Design Result.  By default, up to 10 

candidate sections are available.  The W18x97 happens to be the lightest section.  Also 

notice that Cb is calculated automatically (Cb = 1.3).  If desired, we could now update 

the member with a different section candidate, reanalyze the model and perform the steel 

design again.   

 

You can also view the detailed step-by-step calculation procedures for the most critical 

load condition on each member. 
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Example 17: Design of Steel Column 

 

Problem Description 

 

Select an ASTM A992 W-shape with a 10-in nominal depth to carry the following load effects: 

Pu = 30 kips, Mux = 90 kip-ft, Muy = 12 kip-ft.   

The unbraced length is 14 ft and the ends are pinned.  Cb = 1.14.  The member is non-sway. 

[Ref 32, Example H.4].   

 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions.   

 

 
 

▪ Define the material from Geometry | Materials using the standard steel Steel-A992--

Fy50.  Steel properties such as Fy and Fu are set automatically. 
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▪ Define the section W10x12 (or any W-shape) from Geometry | Sections using the AISC 

table.   

 

 
 

▪ Define the two nodes from Input Data | Nodes.   

 

 
 

▪ Define the one beam from Input Data | Members 
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▪ Define the one supports from Input Data | Supports.  Please note the first node has X, Y 

Z, and OX DOFs fixed.  The second node has Y and Z DOFs fixed.  The fixity in OX 

direction at the first node is needed to ensure the stability of the 3D Frame. 

 

 
 

▪  Define the nodal loads from Input Data | Nodal Loads.  Please note we enter the load 

effects as nodal loads as we do not have the exact load condition in the original example.  

We need to enter Cb manually later instead of letting the program to calculate it for us 

automatically. 
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▪ Define the load combination from Loads | Load Combinations.  Make sure the “Perform 

Steel Design using this Load Combination” is checked. 

 

 
 

▪ Set structural model as 3D Frame from Analysis | Analysis Options.  Run Static 

Analysis to make static analysis results available for steel design. 
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▪ Define the model design option from Steel Design | Model Design Criteria.  Make sure 

to check the options “Consider moment magnification factor B1” and “Adjust deflection 

ratios for each member based on the ratio of analysis section Ix over design candidate 

section Ix”. 

 

 
 

▪ Define the steel member design criteria from Steel Design | Design Criteria | Member 

Design Criteria.  Use “W10” as the section prefix as we want to find the lightest W10 

section.  For this example, we manually enter Cb = 1.14 (The program would calculate 

Cb automatically if Cb is entered 0.0). Also, since we set Lb, Lux, Luy and Luz to be 

zero, the program will use the member actual length for each of them. 
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▪ Define the steel member input from Steel Design | Design Input | Steel Members Input.   

 

 
 

▪ Perform the steel design from Steel Design | Perform Design.   

 

▪ View the steel design results from Steel Design | Design Result.  By default, up to 10 

candidate sections are available.  The original section W10x12 is not adequate with 

critical ratio = 9.64318 (> 1.0).  The first section that is adequate is W10x33 with 

critical ratio = 0.978576 (< 1.0).  At this point, you can update the member section to be 

W10x33, reanalyze the model and perform steel design again. 

 

You can also view the detailed step-by-step calculation procedures for the most critical 

load condition on each member. 
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Steel Calculation Procedure 
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General Info 

File Name C:\temp2\build\cgiSol\output\UnicodeReleasex64\Examples\Example-17 

Member Id 1 

Design Code AISC 360-22 (16th edition) LRFD 

Using Direct Analysis Method No 

Consider Multiplier B1 for P-delta 
Effect 

Yes 

Total Load Deflection Limit 1 / 240 

Live Load Deflection Limit 1 / 360 

Date & Time 11/27/2023 19:26 

Section Property - W10X33 

Property 
 

Value 
 

Unit 
 

Property 
 

Value 
 

Unit 
 

Property 
 

Value 
 

Unit 
 

A = Ag 9.71 in^2 bf 7.96 in tf 0.435 in 

tw 0.29 in d 9.73 in h / tw 27.1  

Cw 791 in^6 h0 9.3 in rts 2.2 in 

Zx 38.8 in^3 Sx 35 in^3 Ix 171 in^4 

rx 4.19 in Zy 14 in^3 Sy 9.2 in^3 

Iy 36.6 in^4 ry 1.94 in J 0.583 in^4 

Design Input 

Input 
 

Value 
 

Unit 
 

Input 
 

Value 
 

Unit 
 

Input 
 

Value 
 

Unit 
 

Pu = Pr 30 kips Mux = Mxr -90 kip-ft Muy = Myr -12 kip-ft 

Cmx 1  Cmy 1  Vux 0 kips 

Vuy 0 kips Fy 50 ksi Cb 1.14  

Lb 14 ft Kx 1  Ky 1  

Kz 1  Lx 14 ft Ly 14 ft 

Lz 14 ft Total Dy 0 in Live Dy 0 in 

L 14 ft 
Analysis 
Section 

W10X12 Ix 
53.8 in^4 

Deflection 
Adjustment 

Ratio 
0.31462  

* Lcx = Kx * Lx; Lcy = Ky * Ly; Lcz = Kz * Lz 

Axial Capacity Calculation 

Step 
 

Equation 
 

Value 
 

Note 
 

Checking flange slenderness 

 b = bf / 2 3.98 in  

 b / tf 9.1494   

 

 

13.487   

The section has non-slender flange element 

Checking web slenderness 

 b / t = h / tw 27.1   
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35.884   

The section has non-slender web 

Compressive strength to account for flexural buckling 

 

 

40.095   

 

 

86.598   

 

 

86.598   

 

 

38.167 ksi Eq.E3-4 

 

 

113.43   

 

 

  

 
 

28.896 ksi Eq.E3-2 

 
 

280.58 kips Eq.E3-1 

Compressive strength to account for torsional and flexural-torsional buckling 

 

 

70.092 ksi Eq.E4-2 

 

 

0.71335   

 

 

  

 
 

37.094 ksi Eq.E3-2 

 
 

360.18 kips Eq.E4-1 

 Flexural buckling controls:  Pn 280.58 kips  

 
 

252.52 kips  

Moment Magnification Calculation 

Step 
 

Equation 
 

Value 
 

Note 
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Moment magnifier B1 for P-delta effects in local x direction 

 

 

1734.1 kips Eq.A-8-5 

 

 

1.0176  Eq.A-8-3 

 Magnified Mux = Mux * B1 -91.584 kip-ft  

Moment magnifier B1 for P-delta effects in local y direction 

 

 

371.16 kips Eq.A-8-5 

 

 

1.0879  Eq.A-8-3 

 Magnified Muy = Muy * B1 -13.055 kip-ft  

Mrx = Mux; Mry = Muy 

Major Flexure Capacity Calculation 

Step 
 

Equation 
 

Value 
 

Note 
 

Web compactness: 

 

 

27.1   

 

 

90.553   

 

 

137.27   

Web is compact 

Flange compactness: 

 

 

9.1494   

 

 

9.1516   

 

 

24.083   

Flange is compact 
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Mnx to account for yielding 

 
 

161.67 kip-ft Eq.F2-1 

Mnx to account for flange local buckling 

 
 

  

 
 

161.67 kip-ft  

Mnx to account for lateral-torsional buckling 

 

 

6.8525 ft Eq.F2-5 

 For I section, c 1   

 

 

21.776 ft Eq.F2-6 

 
 

161.67 kip-ft Eq.F2-1 

Since Lp < Lb < Lr 

 

 

151.77 kip-ft Eq.F2-2 

 Controlling nominal flexural strength Mnx 151.77 kip-ft  

 
 

136.59 kip-ft  

Minor Flexure Capacity Calculation 

Step 
 

Equation 
 

Value 
 

Note 
 

Mny to account for yielding 

 Fy * Zy 58.333 kip-ft  

 Fy * Sy 38.333 kip-ft  

 
 

58.333 kip-ft Eq.F6-1 

Mny to account for lateral-torsional buckling 

 
 

  

 
 

58.333 kip-ft  

 Controlling nominal flexural strength Mny 58.333 kip-ft  

 
 

52.5 kip-ft  
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Flexural and Axial Interaction Calculation 

Step 
 

Equation 
 

Value 
 

Note 
 

 

 

0.1188   

 

 

  

 

 

0.97858  Eq.H1-1b 

Axial-flexural strength: OK 

Major Shear Capacity Calculation 

Step 
 

Equation 
 

Value 
 

Note 
 

 
 

2.8217 in^2  

Computing Cv for major axis using G2.1 

 
 

  

 
 

27.1   

 
 

53.946   

 
 

  

 
 

 Eq.G2-2 

Major shear strength 

 
 

84.651 kips Eq.G2-1 

 
 

  

 
 

  

 
 

84.651 kips  

 

 

0   

Shear strength (major axis): OK 

Minor Shear Capacity Calculation 

Step 
 

Equation 
 

Value 
 

Note 
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6.9252 in^2  

Computing Cv2 for weak axis using G2.2 

 
 

  

 
 

9.1494   

 
 

29.02   

 
 

36.143   

 
 

  

 
 

1  Eq.G2-9 

Minor shear strength 

 
 

207.76 kips Eq.G6-1 

 
 

  

 
 

186.98 kips  

 

 

0   

Shear strength (minor axis): OK 

Total Load Deflection Check 

Step 
 

Equation 
 

Value 
 

Note 
 

 Total Deflection Limit = L / (Total Deflection Denominator)  0.7 in  

 
Total Deflection Ratio = (Total Dy * Deflection Adjustment Ratio) / (Total Deflection 

Limit)  
0   

Total Load Deflection: OK 

Live Load Deflection Check 

Step 
 

Equation 
 

Value 
 

Note 
 

 Live Deflection Limit = L / (Live Deflection Denominator)  0.46667 in  

 Live Deflection Ratio = (Live Dy  * Deflection Adjustment Ratio) / (Live Deflection Limit)  0   

Live Load Deflection: OK 
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Example 18: Response Spectrum Analysis of a Beam 

 

Problem Description 

 

A simply supported beam (L = 20 ft) [Ref 25, Problem.4.8] is subjected to a response spectrum 

in the vertical direction at both supports. The beam section is of size 1.458 in x 14 in.  

Material: E = 30 e6 psi, density = 6538.08 lb/ft^3 

Damping: 0.0 

 
Spectrum Definition: 

 

 
 

Suggested Modeling Steps 

 

▪ Set proper units from Settings | Units & Precisions.   

 

 
 

▪ Define the material from Geometry | Materials  
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▪ Define the section from Geometry | Sections using the Regular Section button.   

 

 
 

▪ Define the two nodes from Input Data | Nodes.   
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▪ Define the one beam from Input Data | Members. Make sure the correct material and 

section are used for this beam. 

  

 
 

▪ Select the beam we just created. Use Edit | Split Members to split it to 10 elements of 

equal lengths. 
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▪ Use Assign | Supports to assign supports to node 1 and 2 

 

 
 

 

▪  From Loads | Response Spectra Library, define the spectrum. 

 

 
 

 

▪ We will convert self-weight to calculate masses. So from Loads | Self Weights, define the 

self-weight multiplier as -1 in Global Y direction.  By default, self-weight will be of 

load case “Default”, which is included in the default load combination “Default”. 
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▪ Set structural model as 2D Frame from Analysis | Analysis Options. We will not consider 

shear deformation on members.  

 

 
 

▪ Frequency analysis must be run prior to response spectrum analysis.  So run frequency 

analysis from Analysis | Frequency Analysis. We will compute the first 10 modes. 

 

. 
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▪ Run response spectrum analysis from Analysis | Response Spectrum Analysis.  Make 

sure we use the correct spectrum and apply directional factor only in Y direction. 

 

 
 

▪ After the response spectrum analysis is done, we can then exam results such as Analysis 

Results | Eigen Values, Analysis Results | Modal Combinations | Nodal Displacements, 

Analysis Results | Modal Combinations | Member End Forces and Moments etc. 

 

The following is a result comparison between Real3D and the reference [Ref 25].   

 

 Real3D Reference 

First Mode Frequency 6.0979 Hz 6.098 Hz 

Midspan Displacement Dy   0.5446 in 0.549 in 

Midspan moment 
9.40764e5 lb-in 

(78.397 kip-ft) 
9.493e5 lb-in 
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